

KS5 "Full Coverage": Differentiation (Year 1)

This worksheet is designed to cover one question of each type seen in past papers, for each A Level topic. This worksheet was automatically generated by the DrFrostMaths Homework Platform: students can practice this set of questions interactively by going to www.drfrostmaths.com, logging on, *Practise* \rightarrow *Past Papers* (or *Library* \rightarrow *Past Papers* for teachers), and using the 'Revision' tab.

Λu	estion	1
vu	esuon	1

Categorisation: Determine the gradient of a curv	ve at a particular point
--	--------------------------

[Edexcel AS SAM P1 Q2]

The curve C has equation

$$y = 2x^2 - 12x + 16$$

Find the gradient of the curve at the point P(5,6).

(Solutions based entirely on graphical or numerical methods are not acceptable.)

Gradient =	 	 	•••		• •	
		(4	m	ar	ks)

Question 2

Categorisation: Find the gradient at key points on the graph, e.g. roots.

[Edexcel C1 Jan 2012 Q8c] The curve C_1 has equation $y = x^2(x+2)$.

Find the gradient of \mathcal{C}_1 at each point where \mathcal{C}_1 meets the x -axis.

$$m_1 = \dots$$
 $m_2 = \dots$ (2 marks)

Categorisation: Find the gradient function where the expression involves roots.

[Edexcel A2 June 2018 P1 Q2ai]

A curve ${\cal C}$ has equation

$$y = x^2 - 2x - 24\sqrt{x}$$
, $x > 0$

Find
$$\frac{dy}{dx}$$

$$\frac{dy}{dx} = \dots$$

(2 marks)

Question 4

Categorisation: Find the gradient function where the expression involves reciprocal terms.[Edexcel FP1 June 2011 Q4a]

$$f(x) = x^2 + \frac{5}{2x} - 3x - 1, \ x \neq 0$$

Use differentiation to find f'(x).

$$f'(x) = \dots$$

(2 marks)

Question 5

Categorisation: Reciprocal root terms.

[OCR C1 June 2010 Q6]

Find the gradient of the curve $y=2x+\frac{6}{\sqrt{x}}$ at the point where x=4 .

.....

Categorisation: Differentiate where prior expansion is required.

[OCR C1 June 2017 Q3] It is given that $f(x) = (3 + x^2)(\sqrt{x} - 7x)$

Find f'(x).

$$f'(x) =$$

(5 marks)

Question 7

Categorisation: Differentiate by first principles.

[Edexcel AS June 2018 P1 Q10 Edited]

Prove, from first principles, that the derivative of x^3 is $3x^2$.

Given formula: $f'(x) = \lim_{h \text{ to } 0} \frac{f(x+h) - f(x)}{h}$

.....

(4 marks)

Question 8

Categorisation: Differentiate by first principles when there are multiple terms.

[Edexcel A2 Specimen Papers P1 Q9] The curve C has equation

$$y = 2x^3 + 5$$

The curve $\mathcal C$ passes through the point P(1,7). Use differentiation from first principles to find the value of the gradient of the tangent to $\mathcal C$ at $\mathcal P$.

$$\frac{dy}{dx} = \dots$$

Categorisation: Determine the range of values for a quadratic function for which the function is increasing or decreasing.

[OCR C1 June 2013 Q9ii]

Find the set of values of x for which $2x^2 - x - 6$ is a decreasing function.

.....

(3 marks)

Question 10

Categorisation: As above, but for a cubic function.

[Edexcel AS Specimen Papers P1 Q1b] A curve has equation

$$y = 2x^3 - 2x^2 - 2x + 8$$

Find the range of values of x for which y is increasing.

Write your answer in set notation.

.....

(4 marks)

Question 11

Categorisation: Increasing/decreasing functions involving awkward powers.

[Edexcel C2 June 2010 Q3b Edited] $y = x^2 - k\sqrt{x}$, where k is a constant.

$$\frac{dy}{dx} = 2x - \frac{1}{2}kx^{-\frac{1}{2}}$$

Given that y is decreasing at x = 4, find the set of possible values of k.

.....

(2 marks)

Categorisation: Determine the stationary point(s) of a function.

[Edexcel C2 May 2013(R) Q1]

Using calculus, find the coordinates of the stationary point on the curve with equation

$$y = 2x + 3 + \frac{8}{x^2}, x > 0$$

.....

(6 marks)

Question 13

Categorisation: As above.

[Edexcel C2 June 2018 Q9a]

Figure 3

Figure 3 shows a sketch of part of the curve with equation

$$y = 7x^2 \left(5 - 2\sqrt{x}\right), \quad x \ge 0$$

The curve has a turning point at the point A , where x>0 , as shown in Figure 3. Using calculus, find the coordinates of the point A .

.....

Categorisation: Determine a turning point where the function involves fractional powers.

[Edexcel C2 Jan 2010 Q9a]

The curve *C* has equation $y = 12\sqrt{x} - x^{\frac{3}{2}} - 10$, x > 0.

Use calculus to find the coordinates of the turning point on *C*.

.....

(7 marks)

Question 15

Categorisation: Stationary points in a modelling context.

[Edexcel AS June 2018 P1 Q8a]

A lorry is driven between London and Newcastle.

In a simple model, the cost of the journey $\pounds C$ when the lorry is driven at a steady speed of v kilometres per hour is

$$C = \frac{1500}{v} + \frac{2v}{11} + 60$$

Find, according to this model, the value of \boldsymbol{v} that minimises the cost of the journey, and the minimum cost of the journey.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

v= km h $^{-1}$

Minimum cost: £

(6 marks)

Categorisation: Stationary values in a geometric context.

[Edexcel AS SAM P1 Q16c Edited]

Figure 4

Figure 4 shows the plan view of the design for a swimming pool. The shape of this pool ABCDEA consists of a rectangular section ABDE joined to a semicircular section BCD as shown in Figure 4.

AE=2x metres, ED=y metres and the area of the pool is 250 m 2 , and the perimeter, P metres, of the pool is given by

$$P = 2x + \frac{250}{x} + \frac{\pi x}{2}$$

Find the minimum perimeter of the pool, giving your answer to 3 significant figures.

Question 17

Categorisation: Determine the second derivative.

[Edexcel A2 June 2018 P1 Q2aii] A curve C has equation

$$y = x^2 - 2x - 24\sqrt{x} \; , \quad x > 0 \label{eq:y}$$
 Find $\frac{d^2y}{dx^2}$

$$\frac{d^2y}{dx^2} = \dots$$
 (1 mark)

Categorisation: Determine the nth term in an arithmetic sequence.

[Edexcel C2 Jan 2010 Q9c Edited]

The curve *C* has equation $y = 12\sqrt{x} - x^{\frac{3}{2}} - 10$, x > 0.

The curve C has a turning point at (4,6).

Given that
$$\frac{d^2y}{dx^2} = -3x^{-\frac{3}{2}} - \frac{3}{4}x^{-\frac{1}{2}}$$

State the nature of the turning point.

.....

(1 mark)

Question 19

Categorisation: Determine the equation of a tangent.

[Edexcel C1 Jan 2013 Q11b Edited]

The curve C has equation

$$y = 2x - 8\sqrt{x} + 5, \quad x \ge 0$$

and hence
$$\frac{dy}{dx} = 2 - \frac{4}{\sqrt{x}}$$
.

The point P on C has x -coordinate equal to $\frac{1}{4}$. Find the equation of the tangent to C at the point P, giving your answer in the form y=ax+b, where a and b are constants.

Categorisation: Determine the equation of the normal and use to make geometric calculations.

[Edexcel AS June 2018 P1 Q15 Edited]

Figure 4

Figure 4 shows a sketch of part of the curve $\mathcal C$ with equation

$$y = \frac{32}{x^2} + 3x - 8, \qquad x > 0$$

The point P(4,6) lies on C.

The line l is the normal to \mathcal{C} at the point \mathcal{P} .

The region R , shown shaded in Figure 4, is bounded by the line l , the curve C , the line with equation x=2 and the x -axis.

Find the area of R.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

Area = unit
2

(10 marks)

Categorisation: Equation of the tangent where the gradient function is already given.

[Edexcel C1 May 2017 Q7a]

The curve C has equation y = f(x), x > 0, where

$$f'(x) = 30 + \frac{6 - 5x^2}{\sqrt{x}}$$

Given that the point P(4, -8) lies on C, find the equation of the tangent to C at P, giving your answer in the form y = mx + c, where m and c are constants.

.....

(4 marks)

Question 22

Categorisation: Determine the point for which a particular gradient for the normal or tangent is achieved.

[Edexcel C1 May 2015 Q10b Edited]

A curve P has the gradient function

$$f(x) = \frac{3\sqrt{x}}{2} - \frac{9}{4\sqrt{x}} + 2$$

where x > 0.

Point *P* lies on the curve. The normal to the curve at *P* is parallel to the line 2y + x = 0.

Find the x -coordinate of P .

 $x = \dots$

Categorisation: Draw/identify a sketch of a gradient function where the original function is given only in sketch form.

The curve with equation y = f(x) is drawn below.

Which of the graph below is a sketch the gradient function of the curve y = f(x)?

Graph A

Graph B

[] A [] B

Categorisation: Use the second derivative to determine the nature of a stationary point.

[Edexcel C2 May 2011 Q8c Edited]

Figure 2

A cuboid has a rectangular cross-section where the length of the rectangle is equal to twice its width, x cm, as shown in Figure 2.

The volume of the cuboid is 81 cubic centimetres.

The total length, L cm, of the twelve edges of the cuboid is given by

$$L = 12x + \frac{162}{x^2}$$

The minimum value of L is 54 cm when x=3.

Justify that the value of \boldsymbol{L} is a minimum.

(2 marks)

Answers

Question 1

Gradient = 8

Attempt to differentiate	M1
$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x - 12$	A1
Substitutes $x = 5 \Rightarrow \frac{dy}{dx} =$	M1
$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 8$	A1ft

Question 2

(c) At
$$x = -2$$
: $\frac{dy}{dx} = 3(-2)^2 + 4(-2) = 4$
At $x = 0$: $\frac{dy}{dx} = 0$ (Both values correct) A1 (2)

Question 3

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 2 - 12x^{-\frac{1}{2}}$$
 M1

Question 4

$f(x) = x^2 + \frac{5}{2}x^{-1} - 3x - 1$		
$f'(x) = 2x - \frac{5}{2}x^{-2} - 3\{+0\}$	At least two of the four terms differentiated correctly. Correct differentiation. (Allow any correct unsimplified form)	M1 A1
$\left\{ f'(x) = 2x - \frac{5}{2x^2} - 3 \right\}$		

$$y = 2x + 6x^{-\frac{1}{2}}$$

$$\frac{dy}{dx} = 2 - 3x^{-\frac{3}{2}}$$
M1 Attempt to differentiate
$$kx^{-\frac{3}{2}}$$
A1 Completely correct expression (no +c)

When
$$x = 4$$
, gradient = $2 - \frac{3}{\sqrt{4^3}}$ M1 Correct evaluation of either $4^{-\frac{3}{2}}$ or $4^{-\frac{1}{2}}$

$$= \frac{13}{8}$$
 A1 5

$$f(x) = \frac{3}{2}x^{-\frac{1}{2}} - 21 + \frac{5}{2}x^{\frac{3}{2}} - 21x^2$$

$$\sqrt{x} = x^{\frac{1}{2}}$$
 seen or implied

B1

 $3x^{\frac{1}{2}} - 21x + x^{\frac{5}{2}} - 7x^3$

A1

 $\frac{3}{2}x^{-\frac{1}{2}} - 21 + \frac{5}{2}x^{\frac{3}{2}} - 21x^2$

A1

Question 7

$$3x^2h + 3xh^2 + h^3$$

Considers $\frac{(x+h)^3-x^3}{h}$	B1
Expands $(x+h)^3 = x^3 + 3x^2h + 3xh^2 + h^3$	M1
so gradient (of chord) = $\frac{3x^2h + 3xh^2 + h^3}{h} = 3x^2 + 3xh + h^2$	A1
States as $h \to 0$, $3x^2 + 3xh + h^2 \to 3x^2$ so derivative = $3x^2$	A1*

Question 8

$$\frac{dy}{dx} = 6$$

$(2(x+h)^3-(2x^3+5))$	B1	1.1b
Gradient of chord = $\frac{(2(x+h)^3 - (2x^3 + 5))}{x+h-x}$	M1	2.1
$(x+h)^3 = x^3 + 3x^2h + 3xh^2 + h^3$	В1	1.1b
Gradient of chord = $\frac{(2(x^3 + 3x^2h + 3xh^2 + h^3) + 5) - (2x^3 + 5)}{1 + h - 1}$		
$= \frac{2x^3 + 6x^2h + 6xh^2 + 2h^3 + 5 - 2x^3 - 5}{1 + h - 1}$		
$=\frac{6x^2h + 6xh^2 + 2h^3}{h}$		
$=6x^2+6xh+2h^2$	A1	1.1b
$\frac{dy}{dx} = \lim_{h \to 0} \left(6x^2 + 6xh + 2h^2 \right) = 6x^2 \text{ and so at } P, \frac{dy}{dx} = 6(1)^2 = 6$	A1	2.2a

$$x < \frac{1}{4}$$

$$\frac{dy}{dx} = 4x - 1 = 0$$
M1

Vertex when $x = \frac{1}{4}$
A1

A1 F1

Attempts $6x^2 - 4x - 2 > 0 \Rightarrow (6x + 2)(x - 1) > 0$	M1	1.1b
$x = -\frac{1}{3}, 1$	A1	1.1b
Chooses outside region	M1	1.1b
$\left\{x:x<-\frac{1}{3}\right\}\cup\left\{x:x>1\right\}$	A1	2.5

Question 11

(b) Substituting
$$x=4$$
 into their $\frac{\mathrm{d}y}{\mathrm{d}x}$ and 'compare with zero' (The mark is allowed for : <, >, =, <, \ge)
$$8 - \frac{k}{4} < 0 \qquad k > 32 \quad (\text{or } 32 < k) \qquad \underline{\text{Correct inequality needed}}$$

Question 12

$\frac{\mathrm{d}y}{\mathrm{d}x} = 2 - 16x^{-3}$	M1 A1
$2-16x^{-3}=0$ so $x^{-3}=$ or $x^3=$, or $2-16x^{-3}=0$ so $x=2$ $x=2$ only (after correct derivative)	M1 A1
$y = 2 \times "2" + 3 + \frac{8}{"2^2"}$	M1
= 9	A1

Question 13

$$\frac{dy}{dx} = 70x - 35x^{\frac{1}{2}}$$
Put $\frac{dy}{dx} = 0$ to give $70x - 35x^{\frac{3}{2}} = 0$ so $x^{\frac{1}{2}} = 2$
M1

$$x = 4$$

$$y = 112$$
A1
A1

Question 14

(4,6)

$$\begin{bmatrix} y = 12x^{\frac{1}{2}} - x^{\frac{3}{2}} - 10 \end{bmatrix}$$

$$[y' =] \qquad 6x^{-\frac{1}{2}} - \frac{3}{2}x^{\frac{1}{2}}$$
M1 A1

Puts their $\frac{6}{x^{\frac{1}{2}}} - \frac{3}{2}x^{\frac{1}{2}} = 0$
So $x = \frac{12}{3} = 4$ (If $x = 0$ appears also as solution then lose A1)

M1, A1

 $x = 4, \Rightarrow y = 12 \times 2 - 4^{\frac{3}{2}} - 10$, so $y = 6$

dM1, A1

$C = \frac{1500}{v} + \frac{2v}{11} + 60 \Rightarrow \frac{dC}{dv} = -\frac{1500}{v^2} + \frac{2}{11}$	M1 A1
Sets $\frac{dC}{dv} = 0 \Rightarrow v^2 = 8250$	M1
$\Rightarrow v = \sqrt{8250} \Rightarrow v = 90.8 \text{ (km h}^{-1}\text{)}$	A1
For substituting their $v = 90.8$ in $C = \frac{1500}{v} + \frac{2v}{11} + 60$	M1
Minimum cost =awrt (£) 93	A1 ft

Question 16

Differentiates P with negative index correct in $\frac{dP}{dx}$; $x^{-1} \rightarrow x^{-2}$	M1
$\frac{\mathrm{d}P}{\mathrm{d}x} = 2 - \frac{250}{x^2} + \frac{\pi}{2}$	A1
Sets $\frac{dP}{dx} = 0$ and proceeds to $x =$	M1
Substitutes their x into $P = 2x + \frac{250}{x} + \frac{\pi x}{2}$ to give	A1
perimeter = 59.8 M	

Question 17

$$\frac{d^2y}{dx^2} = 2 + 6x^{-\frac{3}{2}}$$
 B1ft

Question 18

[Since x > 0] It is a maximum

Question 19

$$y = -6x + 3$$

Question 20

Area = 46 unit ^2

For the complete strategy of finding where the normal cuts the x-axis. Key points that must be seen are

Attempt at differentiation

M

 Attempt at using a changed gradient to find equation of normal 	
 Correct attempt to find where normal cuts the x - axis 	
$y = \frac{32}{x^2} + 3x - 8 \Rightarrow \frac{dy}{dx} = -\frac{64}{x^3} + 3$	M1 A1
For a correct method of attempting to find	
Either the equation of the normal: this requires substituting $x = 4$ in their $\frac{dy}{dx} = -\frac{64}{x^3} + 3 = (2)$, then using the perpendicular gradient rule to find the equation of normal $y - 6 = " - \frac{1}{2}"(x - 4)$ Or where the equation of the normal at (4,6) cuts the x - axis. As above but may not see equation of normal. Eg $0 - 6 = " - \frac{1}{2}"(x - 4) \Rightarrow x =$ or an attempt using just gradients $" - \frac{1}{2}" = \frac{6}{a - 4} \Rightarrow a =$	dM1
Normal cuts the x-axis at $x=16$	A1
For the complete strategy of finding the values of the two key areas. Points that must be seen are • There must be an attempt to find the area under the curve by integrating between 2 and 4 • There must be an attempt to find the area of a triangle	M1

using $\frac{1}{2} \times ('16'-4) \times 6$ or $\int_{4}^{"16"} \left(-\frac{1}{2}x+8\right)^{n} dx$ M1 A1 dM1 A1*

Total area =10 + 36 =46 *

$$y = -7x + 20$$

$f'(4) = 30 + \frac{6 - 5 \times 4^2}{\sqrt{4}}$	Attempts to substitutes $x = 4$ into $f'(x) = 30 + \frac{6 - 5x^2}{\sqrt{x}}$ or their algebraically manipulated $f'(x)$	M1
f'(4) = -7	Gradient = -7	A1
$y-(-8) = "-7" \times (x-4)$ or $y = "-7" x + c \Rightarrow -8 = "-7" \times 4 + c$ $\Rightarrow c = \dots$	Attempts an equation of a tangent using their numeric $f'(4)$ which has come from substituting $x = 4$ into the given $f'(x)$ or their algebraically manipulated $f'(x)$ and $(4,-8)$ with the 4 and -8 correctly placed. If using $y = mx + c$, must reach as far as $c =$	M1
y = -7x + 20	Cao. Allow $y = 20-7x$ and allow the "y =" to become "detached" but it must be present at some stage. E.g. $y =$ = -7x + 20	A1

$$x = 1.5$$

Gradient of normal is - Gradient of tangent = +	$ \frac{1}{2} \Rightarrow \begin{cases} M1: \text{ Gradient of} \\ 2y + x = 0 \text{ is } \pm \frac{1}{2}(m) \Rightarrow \frac{dy}{dx} = -\frac{1}{\pm \frac{1}{2}} \end{cases} $ A1: Gradient of tangent = +2 (May be		M1A1	
implied) The A1 may be implied by $\frac{-1}{2} = -\frac{1}{2}$				
The A1 may be implied by $\frac{\frac{3\sqrt{x}}{2\sqrt{x}} \frac{9}{4\sqrt{x}^{+2}}}{\frac{1}{4\sqrt{x}} + 2} = -\frac{1}{2}$				
$\frac{3\sqrt{x}}{2} - \frac{9}{4\sqrt{x}} + 2 = 2 \Rightarrow \frac{3\sqrt{x}}{4\sqrt{x}} + 2 \Rightarrow $	$\frac{3\sqrt{x}}{2} - \frac{9}{4\sqrt{x}}$	= 0	Sets the given $f'(x)$ or their $f'(x)$ = their changed m and not their m where m has come from $2y + x = 0$	M1
$\times 4\sqrt{x} \Rightarrow 6x - 9 = 0 =$		×4 \sqrt{x} or equivalent correct algebraic processing (allow sign/arithmetic errors only) and attempt to solve to obtain a value for x . If $f'(x) \neq 2$ they need to be solving a three term quadratic in \sqrt{x} correctly and square to obtain a value for x . Must be using the given $f'(x)$ for this mark .		M1
		5) Accept equivalents e.g. $x = \frac{9}{6}$		A1
	If any 'ex	xtra' values are not rejected, score A0.		

Question 23

Δ

When
$$x = 3$$
, $\frac{d^2L}{dx^2} = 12$

{For
$$x = 3$$
}, $\frac{d^2L}{dx^2} = \frac{972}{x^4} > 0 \implies \text{Minimum}$ Correct ft L'' and considering sign. M1 A1