<u>Year 1 Applied Chapter: Forces and Motion – Vectors</u> <u>Exam Questions (Total Marks 41)</u>

Q1.

Two forces \mathbf{F}_1 and \mathbf{F}_2 act on a particle P.

The force F_1 is given by $F_1 = (-i + 2j)$ N and F_2 acts in the direction of the vector (i + j).

Given that the resultant of \mathbf{F}_1 and \mathbf{F}_2 acts in the direction of the vector ($\mathbf{i} + 3\mathbf{j}$),

(a) find \mathbf{F}_2

(7)

The acceleration of P is (3i + 9j) m s⁻². At time t = 0, the velocity of P is (3i - 22j) m s⁻¹

(b) Find the speed of P when t = 3 seconds.

(4)

(Total for question = 11 marks)

Q2.

Two forces $(4\mathbf{i} - 2\mathbf{j})$ N and $(2\mathbf{i} + q\mathbf{j})$ N act on a particle P of mass 1.5 kg. The resultant of these two forces is parallel to the vector $(2\mathbf{i} + \mathbf{j})$.

(a) Find the value of q.

(4)

At time t = 0, P is moving with velocity (-2i + 4j)m s⁻¹.

(b) Find the speed of P at time t = 2 seconds.

(6)

(Total 10 marks)

Q3.

Two forces, $(4\mathbf{i} - 5\mathbf{j})$ N and $(p\mathbf{i} + q\mathbf{j})$ N, act on a particle P of mass m kg. The resultant of the two forces is \mathbf{R} . Given that \mathbf{R} acts in a direction which is parallel to the vector $(\mathbf{i} - 2\mathbf{j})$,

(a) find the angle between R and the vector j,

(3)

(b) show that 2p + q + 3 = 0.

(4)

Given also that q = 1 and that P moves with an acceleration of magnitude $8\sqrt{5}$ m s⁻²,

(c) find the value of *m*.

(7)

(Total 14 marks)

Q4.

A particle is acted upon by two forces F_1 and F_2 , given by

$$F_1 = (i - 3j) N,$$

 $\mathbf{F_2} = (p\mathbf{i} + 2p\mathbf{j}) \text{ N}$, where p is a positive constant.

(a) Find the angle between $\mathbf{F_2}$ and \mathbf{j} .

(2)

The resultant of F_1 and F_2 is R. Given that R is parallel to i ,

(b) find the value of *p*.

(4)

(Total 6 marks)