FP1 - Series Questions ANSWERS (42 marks)

Jan 2013

1.	$\sum_{r=1}^{n} 3(4r^2 - 4r + 1) = 12\sum_{r=1}^{n} r^2 - 12\sum_{r=1}^{n} r + \sum_{r=1}^{n} 3$	M1
	$= \frac{12}{6}n(n+1)(2n+1) - \frac{12}{2}n(n+1), +3n$	A1, B1
	= n[2(n+1)(2n+1) - 6(n+1) + 3]	M1
	$= n \left[4n^2 - 1 \right] = n(2n+1)(2n-1)$	A1 cso
		[5]
Notes:	Induction is not acceptable here	
	First M for expanding given expression to give a 3 term quadratic and	
	attempt to substitute.	
	First A for first two terms correct or equivalent.	
	B for $+3n$ appearing	
	Second M for factorising by n	
	Final A for completely correct solution	

June 2012

	6 7017		-
4. (a)	$\sum_{r=1}^{n} \left(r^3 + 6r - 3 \right)$		
		M1; An attempt to use at least one of the standard formulae correctly in summing at least 2 terms of $r^3 + 6r - 3$	
	$= \frac{1}{4}n^2(n+1)^2 + 6 \cdot \frac{1}{2}n(n+1) - 3n$	A1: Correct underlined expression.	M1A1B1
		B1:-3 → -3n	
	$= \frac{1}{4}n^2(n+1)^2 + 3n^2 + 3n - 3n$		
	If any marks have been lost, no furth	her marks are available in part (a)	
	$= \frac{1}{4}n^{2}(n+1)^{2} + 3n^{2}$ $= \frac{1}{4}n^{2}((n+1)^{2} + 12)$	Cancels out the $3n$ and attempts to factorise out at least $\frac{1}{4}n$.	dM1
	$= \frac{1}{4}n^2 \left(n^2 + 2n + 13\right) $ (AG)	Correct answer with no errors seen.	A1 *
	Provided the first 3 marks are scored, allow the next two marks for correctly showing the algebraic equivalence. E.g. showing that both		
	$\frac{1}{4}n^2(n+1)^2 + 6.\frac{1}{2}n(n+1) - 3n \text{ and } \frac{1}{4}n^2(n^2 + 2n + 13) = \frac{1}{4}n^4 + \frac{1}{2}n^3 + \frac{13}{4}n^2$		
	There are no marks for proof by induct	ion but apply the scheme if necessary.	
			[5]
(b)	$S_n = \sum_{r=16}^{30} (r^3 + 6r - 3) = S_{30} - S_{15}$		
	$= \frac{1}{4}(30)^2(30^2 + 2(30) + 13) - \frac{1}{4}(15)^2(15^2 + 2(15)^2)$	$\underline{\text{Use}} \text{ of } S_{30} - S_{15} \text{ or } S_{30} - S_{16}$	M1
	NB They must be using $S_n = \frac{1}{4}n^2(n^2 + 2n + 13)$ not $S_n = n^3 + 6n - 3$		
	= 218925 - 15075		
	= 203850	203850	A1 cao
	NB S ₃₀ - S ₁₆ =218925 - 19264 = 199661 (Scores M1 A0)		
I	-30 -10		

June 2011

7.	$\left\{ \mathbf{S}_{n} = \right\} \sum_{r=1}^{n} (2r - 1)^{2}$			
(a)	$= \sum_{r=1}^{n} 4r^2 - 4r + 1$	Multiplying out brackets and an attempt to use at least one of the two standard formulae correctly.	М1	
	$= 4 \cdot \frac{1}{6} n(n+1)(2n+1) - 4 \cdot \frac{1}{2} n(n+1) + n$	First two terms correct.	A1	
	6 2	+ n	B1	
	$= \frac{2}{3}n(n+1)(2n+1) - 2n(n+1) + n$			
		Attempt to factorise out $\frac{1}{3}n$	M1	
	$= \frac{1}{3}n\{2(n+1)(2n+1) - 6(n+1) + 3\}$	Correct expression with $\frac{1}{3}n$ factorised out	1	
		with no errors seen.	A1	
	$= \frac{1}{3}n\left\{2(2n^2+3n+1) - 6(n+1) + 3\right\}$			
	$= \frac{1}{3}n\left\{4n^2 + 6n + 2 - 6n - 6 + 3\right\}$			
	$= \frac{1}{3}n(4n^2-1)$			
	$= \frac{1}{3}n(2n+1)(2n-1)$	Correct proof. No errors seen.	A1 *	
	Note that there are no mark	s for proof by induction.	+	(6)
(b)	$\sum_{r=n+1}^{3n} (2r-1)^2 = S_{3n} - S_n$			
		Use of $S_{3n} - S_n$ or $S_{3n} - S_{n+1}$ with the	1	
	$\frac{1}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{1}{2} \frac{1}$	result from (a) used at least once.	M1	
	$= \frac{1}{3} \cdot 3n(6n+1)(6n-1) - \frac{1}{3}n(2n+1)(2n-1)$	Correct unsimplified expression.	A1	
		E.g. Allow 2(3n) for 6n.	AI	
	Note that (b) says hence so they have	ve to be using the result from (a)	-	
	$= n(36n^2 - 1) - \frac{1}{3}n(4n^2 - 1)$			
	$= \frac{1}{3}n(108n^2 - 3 - 4n^2 + 1)$	Factorising out $\frac{1}{3}n$ (or $\frac{2}{3}n$)	dM1	
	$= \frac{1}{3}n(104n^2 - 2)$			
	$= \frac{2}{3}n(52n^2 - 1)$	$\frac{2}{3}n(52n^2-1)$	A1	
	$\{a = 52, b = -1\}$			(4)
I			1	I

Jan 2011

5		$\sum_{r=0}^{n} r(r+1)(r+5)$			
	(a)	$\sum_{r=1}^{n} r(r+1)(r+5)$ $= \sum_{r=1}^{n} r^3 + 6r^2 + 5r$ $= \frac{1}{4}n^2(n+1)^2 + 6 \cdot \frac{1}{6}n(n+1)(2n+1) + 5 \cdot \frac{1}{2}n(n+1)$	Multiplying out brackets and an attempt to use at least one of the standard formulae correctly. <u>Correct expression.</u>	M1	
		$= \frac{1}{4}n^2(n+1)^2 + n(n+1)(2n+1) + \frac{5}{2}n(n+1)$ $= \frac{1}{4}n(n+1)(n(n+1) + 4(2n+1) + 10)$	Factorising out at least $n(n+1)$	dM1	l
		$= \frac{1}{4}n(n+1)\left(n^2 + n + 8n + 4 + 10\right)$ $= \frac{1}{4}n(n+1)\left(n^2 + 9n + 14\right)$	Correct 3 term quadratic factor	A1	
		$= \frac{1}{4}n(n+1)(n+2)(n+7) *$	Correct proof. No errors seen.	A1	(5)
	(b)	$S_n = \sum_{r=20}^{50} r(r+1)(r+5)$ $= S_{50} - S_{10}$			
		$= \frac{1}{4}(50)(51)(52)(57) - \frac{1}{4}(19)(20)(21)(26)$	Use of $S_{50} - S_{19}$	M1	
		= 1889550 - 51870			
		= 1837680	1837680 Correct answer only 2/2	A1	(2) [7]

June 2009

			_		
Q3	(a)	$r(r+2)(r+4) = r^3 + 6r^2 + 8r, \text{ so use } \sum r^3 + 6\sum r^2 + 8\sum r$ $= \frac{1}{4}n^2(n+1)^2 + 6\left(\frac{1}{6}n(n+1)(2n+1)\right) + 8\left(\frac{1}{2}n(n+1)\right)$ $= \frac{1}{4}n(n+1)\{n(n+1) + 4(2n+1) + 16\}$		1M1 1A1 2M1 2A1	
		$= \frac{1}{4}n(n+1)\left\{n^2 + 9n + 20\right\} = \frac{1}{4}n(n+1)(n+4)(n+5)$ (*)		(5)	
(b)		$\sum_{21}^{30} = \sum_{1}^{30} - \sum_{1}^{20}$			
		$= \frac{1}{4}(30 \times 31 \times 34 \times 35) - \frac{1}{4}(20 \times 21 \times 24 \times 25) = 213675$	1A1	(2) [7]	
(a)		Alternative (induction):			
		$\frac{1}{4}k(k+1)(k+4)(k+5) + (k+1)(k+3)(k+5)$ $= \frac{1}{4}(k+1)(k+5)(k^2+4k+4k+12)$ $= \frac{1}{4}(k+1)(k+2)(k+5)(k+6)$ 2M1 Quadratic factor seen $= \frac{1}{4}(k+1)(k+2)(k+5)(k+6)$ 1A1 cso Check for k = 1: Term = 15, Sum = $\frac{60}{4}$ = 15 Induction argument + conclusion 2A1 cao			
	(a)	Q3 Notes 1M1 Expand in terms of $\sum r^3$, $\sum r^2$, $\sum r$ 1A1 Correct substitution in correct expansion. 2M1 Factorisation, 3 term quadratic factor seen 2A1 a correct quadratic factor 3A1 cso $\sum_{21}^{30} = \sum_{1}^{30} - \sum_{1}^{19} \sum_{0}^{30} = \sum_{1}^{30} - \sum_{1}^{21} $ 1M1 allowed for $\sum_{21}^{30} = \sum_{1}^{30} - \sum_{1}^{21} \sum_{0}^{30} = \sum_{1}^{30} - \sum_{1}^{30} = \sum_{1}^{30} = \sum_{1}^{30} - \sum_{1}^{30} = \sum_{1}^{30} = \sum_{1}^{30} - \sum_{1}^{30} = \sum_{1}^{30} = \sum_{1}^{30} = \sum_{1}^{30} = \sum_{1}^{30} = \sum_{1}^{30} = \sum_{1}^{$			

Jan 2009

1	(a)	$\sum_{r=1}^{n} r^{2} - \sum_{r=1}^{n} r - \sum_{r=1}^{n} 1 = \frac{1}{6} n(n+1)(2n+1) - \frac{1}{2} n(n+1) - n$	M1, A	11
		r=1 $r=1$	M1	
		$=\frac{1}{n}n(n^2-4)$ (**)	A1 cso	(4)
	(b)	$\sum_{r=1}^{20} (r^2 - r - 1) - \sum_{r=1}^{9} (r^2 - r - 1) = \frac{1}{3} \times 20 \times (20^2 - 4) - \frac{1}{3} \times 9 \times (9^2 - 4)$ $= 2409$	M1	
	(1.)	= 2409	A1	(2)
Alt	(D)	$= 2409$ $\sum_{r=1}^{20} (r^2 - r - 1) - \sum_{r=1}^{9} (r^2 - r - 1) =$ $\left(\frac{1}{6} \times 20 \times 21 \times 41 - \frac{1}{2} \times 20 \times 21 - 20\right) - \left(\frac{1}{6} \times 9 \times 10 \times 19 - \frac{1}{2} \times 9 \times 10 - 9\right) M1$		
		$\left(\frac{1}{6} \times 20 \times 21 \times 41 - \frac{1}{2} \times 20 \times 21 - 20\right) - \left(\frac{1}{6} \times 9 \times 10 \times 19 - \frac{1}{2} \times 9 \times 10 - 9\right)$ M1		
		= 2409 A1		[6]
Note	Notes (a) 1^{st} M: Separating, substituting set results, at least two correct. 2^{nd} M: Either "eliminate" brackets totally or factor x [] where any product of brackets inside [] has been reduced to a single bracket 2^{nd} A: ANSWER GIVEN. No wrong working seen; must have been an intermediate step, e.g. $\frac{1}{6}n(2n^2 + 3n + 1 - 3n - 3 - 6)$. (b) M: Must be $\sum_{r=1}^{20}$ () $-\sum_{r=1}^{9}$ () applied.			
	If list terms and add, allow M1 if 11 terms with at most two wrong:			
		[89, 109, 131, 155, 181, 209, 239, 271, 305, 341, 379]		