Year 2 Pure Chapter 7: asinx + bcosx- Exam Questions (63 mins)

	è		

The diagram above shows an oscilloscope screen.

The curve shown on the screen satisfies the equation

(a) Express the equation of the curve in the form $y = R\sin(x + \alpha)$, where R and α are constants, R > 0 and $0 < \alpha <$

(4)

(b) Find the values of x, $0 \le x < 2\pi$, for which y = 1.

(4)

(Total 8 marks)

2. (a) Express $5 \cos x - 3 \sin x$ in the form $R \cos(x + \alpha)$, where R > 0 and $0 < \alpha < 1$

(4)

(b) Hence, or otherwise, solve the equation

$$5\cos x - 3\sin x = 4$$

for 0 x < 2, giving your answers to 2 decimal places.

(5)

(Total 9 marks)

Given that $f(x) = R\cos(x - \alpha)$, where R > 0 and,

- (a) find the value of R and the value of α to 3 decimal places.
- (b) Hence solve the equation

$$5\cos x + 12\sin x = 6$$

for $0 \le x < 2\pi$.

(5)

- (c) (i) Write down the maximum value of $5\cos x + 12\sin x$.
 - (ii) Find the smallest positive value of x for which this maximum value occurs.

(2)

(1)

(4)

4. $f(x) = 12 \cos x - 4 \sin x$.

Given that $f(x) = R \cos(x + \alpha)$, where $R \ge 0$ and $0 \le \alpha \le 90^{\circ}$,

(a) find the value of R and the value of α .

(4)

(b) Hence solve the equation

$$12\cos x - 4\sin x = 7$$

for $0 \le x \le 360^\circ$, giving your answers to one decimal place.

(5)

(c) (i) Write down the minimum value of $12 \cos x - 4 \sin x$.

(1)

(ii) Find, to 2 decimal places, the smallest positive value of x for which this minimum value occurs.

(2)

(Total 12 marks)

-	т		
5.	In a	particular circuit the current, <i>I</i> amperes, is given by	
		$I = 4 \sin \theta - 3 \cos \theta, \theta > 0,$	
	when	$re \theta$ is an angle related to the voltage.	
	Give	en that $I = R \sin (\theta - \alpha)$, where $R > 0$ and $0 \le \alpha < 360^{\circ}$,	
	(a)	find the value of R , and the value of α to 1 decimal place.	(4)
			(4)
	(b)	Hence solve the equation $4 \sin \theta - 3 \cos \theta = 3$ to find the values of θ between 0 and 360°.	
			(5)
	(c)	Write down the greatest value for I .	(1)
			(1)
	(d)	Find the value of θ between 0 and 360° at which the greatest value of I occurs.	(2)
			(Total 12 marks)