

AS Level / Year 1 Paper 2 (Edexcel Version)

Version 1

Question	Scheme	Marks
1		
(a)	Okta(s) Correct unit	B1 (1)
(b)	enumerate the data points and describes how enumerated list will be used to obtain a sample of data points Point 1	B1
	explains how to deal with repeats Point 2	B1
	explains how to obtain a sample of size 30 Point 3	B1 (3)
(c)	small <u>er</u> amount of data to process / analyse Correct reason	B1 (1) 5
	Question 1 Notes	5

(b) Point 1: must include **both** ideas. If the candidate suggests the use of random numbers to obtain a sample, they must explain how the random numbers can be generated, i.e. use of a calculator/spreadsheet

Point 2: states clearly that repeats will be ignored

Point 3: i.e. continue until 30 different numbers have been selected and their corresponding data points

(c) Ignore words such as 'small' – sentence must be comparative. Must be qualified by a suitable reason, i.e. the idea that a smaller amount of data is useful for processing/analysing/oe

Accept a valid alternative that is comparative and thorough. Ignore references to this being 'cheaper' and 'quicker' unless this is qualified. For example,

'there is a smaller amount of data which means it is quicker to process' scores B1

'there is a smaller amount of data so it is quicker' scores B0

Question	Scheme	Marks
2		
(a)	experience is the explanatory variable / the A correct explanatio explanatory variable should go on the first row / salary is the response variable / the response variable should go on the second row	B1 (1)
(b)	Mean = £41875 Correct mea	n B1
	Standard deviation $= \sqrt{\frac{19000^2 + + 80000^2}{8} - (41875)^2}$ $= 200021.472$ Attempts to find the standar deviation (SEE NOTES)	
	=£20021	(3)
(c)	$\{41875 + 20021.472 \sim 61896, \text{ so the outlier is} \ £80000$ Correct outlies	r B1 (1)
(d/i)	e.g. it is a piece of data and we should consider all of the data Reaso	n B1 (1)
(d/ii)	e.g. it is an extreme value and could unduly influence analysis Reaso or it could be a mistake	
(e)	P = 24000 + 3400(9) Substitutes 9 into the regressio lin	
(f)	Unreliable, because 9 years lies outside the {regression line's} data range	
		10

Question 2 Notes

- (a) Accept any of the statements (or reasonable variations of them use your judgment)
- (b) 1st M1 must show correct SD calculation. The '...' used in the mark scheme is to preserve space only but candidates **MUST** show squaring all of the terms to get the M1.

Answers only score 3/3

Answers should be to 3 sf.

- (c) Correct salary. Condone 'the salary corresponding to 10 years of experience' oe
- (d) (i) a correct reason to include the outlier
- (ii) a correct reason to exclude the outlier. Ignore 'it is an extreme value' without qualification
- (e) M1 substitutes 9 into the regression line

A1 – correct answer

Answer should be to 3 sf but do **NOT** penalise 3 sf twice in this question.

(f) Unreliable + explanation. Ignore 'extrapolation is dangerous' without qualification. There needs to be a specific acknowledgment that 9 years lies outside of the regression line's data set for the B1.

Question	Scheme		Marks
3			
(a)	{Let X be the r.v., "number of customers in the sample that spend at least £20", then} $X \sim B(35,0.6)$	Uses a binomial distribution with $n = 35$ and $p = 0.6$ {see notes for alternatives}	M1
	$P(X > 18) = P(X \ge 19) = 0.8065$	awrt correct probability (standard form not necessary)	A1 (2)
(b)	72 (weighted) squares in total, so $\frac{35}{72}$ represents 1 customer	Seen or implied	M1
	46 (weighted) squares representing customers spending at least £20, so $\frac{35}{72} \times 46$	Seen or implied	M1
	= 22.361, so <u>22 customers</u>	Either 22 or 23 customers	A1 (3)
(c)	$H_0: p = 0.6, \ H_1: p \neq 0.6$	Both hypotheses correctly stated	B1
Way 1	Expected value is 21, so consider the upper tail:		
	$P(X \ge 22) = 1 - P(X \le 21) = 0.4361$ OR $P(X \ge 23) = 1 - P(X \le 22) = 0.3057$	Considers the upper tail AND finds the probability of <i>X</i> being greater than 21 or 22 ft their (b)	M1A1
	Insufficient evidence of reject H_0 / not significant / accept H_0	A correct statement ft their probability. Ignore comparisons	dM1
	No evidence to support that the probability that a customer spends at least £20 has changed	cso fully correct solution and contextual conclusion containing the words 'customer spends'	A1 (5)

	Question 3 Notes		
			10
	No evidence to support that the probability that a customer spends at least £20 has changed	cso fully correct solution and contextual conclusion containing the words 'customer spends'	A1 (5)
	22/23 is outside of the critical region, so insufficient evidence to reject H_0 not significant / accept H_0	A correct statement ft their CR	dM1
Way 2	$P(X \ge 27) = 0.0259$, $P(X \ge 28) = 0.0101$ $P(X \le 14) = 0.0132$, $P(X \le 14) = 0.0300$ So CR is $(X \le 14) \cup (X \ge 28)$	One of these statements leading to a critical region. ACCEPT solutions that only give the upper tail of the CR	M1A1
(c)	$H_0: p = 0.6, H_1: p \neq 0.6$	Both hypotheses correctly stated	B1

(a) M1: Uses the binomial distribution (35, 0.6). No need to define a random variable etc..

ALTERNATIVE: uses a binomial distribution $Y \sim (35, 0.4)$ **AND** finds P(X < 17)

A1: awrt **0.807**

(b) 1st M1: finds number of customers represented by 1 square (oe)

2nd M1: attempts to find number of customers that spent more than £20

A1: 22 or 23 customers Accept either BUT NOT BOTH

(c) B1: states the hypotheses correctly

1st M1 A1: finds probabilities or (upper) critical region

 2^{nd} M1: correct statement ft their probabilities/CR. **IGNORE** comparisons to the significance level as this is not enough on its own to gain the M1

 2^{nd} A1: **cso** a fully correct solution with no omissions/errors seen and a contextual conclusion that contains the words 'customer spends'

Question	Scheme	Marks
4		
Way 1	{Let x be $P(A)$ and y be $P(B)$ }	
	By independence, $xy = 0.06$ and $(1-x)(1-y) = 0.51$ See notes	M1B1
	$\Rightarrow 1 + 0.06 - x - \frac{0.06}{x} = 0.51$ Eliminates y and rearranges to form a 3TQ	dM1
	$\Rightarrow 0.55x - x^2 - 0.06 = 0$	
	$\Rightarrow x = \frac{-0.55 \pm \sqrt{0.55^2 - 4(-1)(-0.06)}}{2(-1)}$ Method to solve their 3TQ	dM1A1
	$\Rightarrow x = 0.4 \text{ or } 0.15$	
	$\max \{P(\text{not } A)\} = 1 - \min \{P(A)\}$ $= 0.85$ Maximum value of $P(\text{not } A)$	A1 (6)
Way 2	{Let x be $P(A)$ and y be $P(B)$ }	
	By independence, $xy = 0.06$ and $(1-x)(1-y) = 0.51$ See notes	M1B1
	$\Rightarrow 1 + 0.06 - \frac{0.06}{y} - y = 0.51$ Eliminates x and rearranges to form a 3TQ	
	$\Rightarrow 0.55y - y^2 - 0.06 = 0$	
	$\Rightarrow y = \frac{-0.55 \pm \sqrt{0.55^2 - 4(-1)(-0.06)}}{2(-1)}$ Method to solve their 3TQ	dM1A1
	$\Rightarrow y = 0.4 \text{ or } 0.15$	
	$\Rightarrow x = 0.4 \text{ or } 0.15$ Uses their y to find x	dM1
	$\max \{P(\text{not } A)\} = 1 - \min \{P(A)\}$ $= 0.85$ Maximum value of $P(\text{not } A)$	A1 (6)
	l	6

Ouestion 4 Notes

Way 1:

- 1st M1 writes down both equations. Allow the use of different symbols etc. provided it is clear what they are (or it becomes clear)
- B1 **clearly** states that <u>both</u> equations are implied by independence. If candidate says/implies that only one of the equations is a result of independence, award B0
- 2^{nd} M1 dependent on 1^{st} M1. Solves simultaneous equations to eliminate y (P(B)) and attempts to form a 3TQ
- 3rd M1 dependent on both previous M marks. Solves the 3TQ by an appropriate method, i.e. use of the formula/factorising/completing the square.
- 1^{st} A1 correct values of P(A)
- 2^{nd} A1 correct MAXIMUM value of P(not A). Quoting both values without clearly stating which is maximum is A0.

Way 2:

- 1st M1 writes down both equations. Allow the use of different symbols etc. provided it is clear what they are (or it becomes clear)
- B1 **clearly** states that <u>both</u> equations are implied by independence. If candidate says/implies that only one of the equations is a result of independence, award B0
- 2nd M1 dependent on previous M mark. Solves the 3TQ by an appropriate method, i.e. use of the formula/factorising/completing the square.
- 1^{st} A1 correct values of P(A)
- 3^{rd} M1 dependent on both previous M marks. Uses their value of P(B) to find P(A)
- 2^{nd} A1 correct MAXIMUM value of P(not A). Quoting both values without clearly stating which is maximum is A0.

ALTERNATIVES:

Defining x as P(not A) etc. is OK – simply adapt the scheme accordingly using the guiding principles:

• not marks for finding anything to do with B until it is made clear that it is being used to find information about A

Special case: Some candidates may see the symmetry of the problem and max(not B) = max(not A). In this case, marks **CAN** be awarded for finding information about B provided this is made clear before.

Special case: Trial and error based solutions alone score 0 marks unless they show that the values of *A* and *B* work.

Question	Scheme	Marks
5		
	$R(\uparrow): 2 - 3p - q = 0$ Uses N2L $R(\leftarrow): q - 4 - p - 6 = 3(5) \Rightarrow q - p = 25$	M1A1
	Adding the equations, Attempts to solve the equations $2-3p-p=25 \Rightarrow p=$ Simultaneously	dM1
	$p = -\frac{23}{4}$ Correct value of p	A1
	$\Rightarrow q = -\frac{23}{4} + 25 = \frac{77}{4}$ Correct value of q	A1
		5
	Question 5 Notes	

1st M1 – attempts to use N2L to form **ONE** equation. The equation should be dimensionally correct, have the correct number of terms, but you can condone a sign error, i.e. failing to distribute a negative sign. If candidates have two equations, consider the 'best' one for this mark

1st A1 – **BOTH** equations correct oe

2nd M1 – attempts to solve the equations simultaneously using any method. Dependent on the 1st M1.

 2^{nd} A1 – correct value of p

 3^{rd} A1 – correct value of q

Special case: Assuming that q = weight and 3g N scores no marks (other downward forces may be at work).

Question	Scheme		Marks
6			
(a)	$a = \frac{v - u}{t} = \frac{-26}{2.5} = -10.4$	Finds the acceleration of the particle as it moves upwards	M1A1
	$\Rightarrow -2g - R = 2(-10.4)$ $\Rightarrow R = 1.2 \{N\}$	Uses N2L to find R	dM1A1 (4)
(b)	$v^2 = u^2 + 2as \Rightarrow s = \frac{0^2 - 26^2}{2(-10.4)} = 32.5 \text{ m}$	Uses kinematics formula	M1A1 (2)
(c)	As the particle moves upwards, <i>R</i> and the particle's weight both act downwards		
	As the particle moves downwards, <u>R acts upwards</u> and the particle's <u>weight acts downwards</u> ; so the <u>resultant force is different</u> {compared to when the particle moves upwards}	Both points, see notes for guidance	B1B1 (2)
(d)	As the particle descends, $2g - R = 2a \Rightarrow a = \frac{2g - 1.2}{2} = 9.2$	Uses N2L to find downward acceleration ft their <i>R</i>	M1
	$s = ut + \frac{1}{2}at^2 \Rightarrow t = \sqrt{\frac{2(32.5)}{9.2}}$	Uses kinematics formula to find t ft their a and s	dM1
	t = 2.575	Correct t ft their R and s	A1ft
	In total, the particle spends 5.1 s in the air (2 sf)	Correct total time in the air	A1 (4)
			12

Ouestion 6 Notes

- (a) 1st M1 Attempts to find the acceleration of the particle using the correct formula. Condone sign errors.
- 1st A1 correct acceleration (ignore sign)
- 2^{nd} M1 Uses N2L to find R. Usual rules apply equation must be dimensionally correct, containing the correct number of terms and condone one sign error. If candidate makes a real mess with their signs, award M0.
- 2^{nd} A1 correct R. Units not required. If candidates give a negative sign, award A0 (as this is not a magnitude).
- (b) M1- attempts to find maximum height reached by the particle above the ground.
- A1 correct maximum distance
- (c) 1^{st} B1 states which forces act on the particle on the way down and their directions. **This can be obtained** from a clear and labelled diagram.
- 2nd B1 must make a clear comment that the **resultant force** is different.

Do not accept "the equation of motion is different" unless qualified.

Ignore vague references to N2L as we require a clear understanding of what has changed (the resultant force).

Special case: if candidates write down the <u>correct</u> equation of motion of the particle as it moves up and down and makes a clear comparison between the <u>resultant forces</u>, then award the 2nd B1 (even without explicitly using the term 'resultant force')

- (d) 1st M1 attempts to use N2L to find the downwards acceleration (if equation given in (c), then award the M1).
- 2nd M1 uses the kinematics formula to find the time of the particle's descent, ft their previous values.
- 1st A1ft correct time the particle descends ft their previous values
- 2nd A1 correct time the particle is in the air. Cao.

Question	Scheme	Marks
7		
(a) (i/ii)	For $A: T = 3am$ Correct equations of motion For $B: 5mg - T = 5am$	M1
	$\Rightarrow a = \frac{5g}{8} \text{ {m s}}^{-2}$ $\Rightarrow T = \frac{15mg}{8} \text{ {N}}$ Correct acceleration and tension in terms of m and g	A1A1
	$\Rightarrow T = \frac{15mg}{8} \{N\}$	(3)
(b)	$\sqrt{\left(\frac{15mg}{8}\right)^2 + \left(\frac{15mg}{8}\right)^2} = \frac{15mg\sqrt{2}}{8}$ Uses Pythagoras' or an equivalent method	M1A1
	Direction is at 45 degrees away from the table Correct direction	B1 (3)
		6
	Question 7 Notes	

(a) 1st M1 – both equations of motions correct

A1; A1 – correct tension; correct acceleration in terms of m and g

(b) $1^{st} M1$ – attempts to find the resultant force on the pulley

 $1^{st} A1$ – correct resultant force on the pulley

B1 – correct direction of the force. Can be illustrated by a diagram.

Question	Scheme	Marks	
8			
	$2^{2} - 4k(4 - k) < 0$ Forms an inequality and attempts to solve it	M1 dM1	
	$\Rightarrow 2 - \sqrt{3} < k < 2 + \sqrt{3} \Rightarrow \max(k) = 3$ Correct maximum value of k	A1	
	distance travelled = $\int_{2}^{3} (3t^2 + 2t + 1) dt = \left[t^3 + t^2 + t\right]_{2}^{3}$ See notes for criteria	M1 A1ft	
	$= (3^{3} + 3^{2} + 3) - (2^{3} + 2^{2} + 2)$ Substitutes the limits in to find the correct total distance travelled = 25 {m}	dM1 A1	
		7	
	Question 8 Notes		

 1^{st} M1 – uses the discriminant to find an inequality in k.

 2^{nd} M1 – dependent on the 1^{st} M1. Uses a correct method to solve their inequality in k.

 1^{st} A1 – correct **maximum** value of k.

3rd M1 – Award the mark for one of the following:

- integrates the velocity expression with respect to time with k = 3. Ignore limits.
- integrates the velocity expression with respect to time with their suitable* value of k. Ignore limits.
- integrates the velocity expression <u>with respect to time</u> in terms of k and substitutes a suitable value of k in at a later stage. **Ignore limits**.

4th A1 – correct integration ft their expression. Must have the 3rd M1 for this mark.

5th M1 – uses the correct limits and substitutes these in the right way around.

5th A1 – correct total distance travelled.

*A value of k is suitable if

- it is an integer
- it comes from a calculation that uses the fact that the particle is never at rest
- is clearly a maximum value from their calculation, i.e. do not accept a value of k if their calculation/set suggests that the value is actually a minimum (this could happen if candidates make a sign error)