Surname							
Other Names							
Candidate Signature							
Centre Number			Candidate Number	er			
Examiner Comments					Tota	al Mar	KS

MATHEMATICS

AS PAPER 1

CM

Bronze Set B (Edexcel Version)

Time allowed: 2 hours

Instructions to candidates:

- In the boxes above, write your centre number, candidate number, your surname, other names and signature.
- Answer ALL of the questions.
- You must write your answer for each question in the spaces provided.
- You may use a calculator.

Information to candidates:

- Full marks may only be obtained for answers to ALL of the questions.
- The marks for individual questions and parts of the questions are shown in round brackets.
- There are 14 questions in this question paper. The total mark for this paper is 100.

Advice to candidates:

- You should ensure your answers to parts of the question are clearly labelled.
- You should show sufficient working to make your workings clear to the Examiner.
- Answers without working may not gain full credit.

1 In ascending powers of x , find the first four terms of the binomial expansion of				
$\left(3+\frac{x}{2}\right)^7$				
giving each term in its simplest form.	(5)			

Question 1 continued
TOTAL 5 MARKS

2 Solve, for $-360^{\circ} \le \theta \le 360^{\circ}$, the equation	
$2\cos(\theta) - 5\sin(\theta) = 0$	
Give your solutions to one decimal place.	(4)

Question 2 continued	
TOTAL 4 M	1ARKS

3 On separate axes, sketch the curves with equation

(a)
$$y = 4^x$$

6

(b)
$$y = 3 + 4^x$$

(c)
$$y = -4^x$$

On each sketch, show clearly the coordinates of any points where the curve crosses or meets the coordinate axes and state the equations of any asymptotes to the curve.

Question 3 continued		
	TOTAL 6 MARKS	

4 The circle C is centred at the point $(2,-1)$ and passes through the point $(4,2)$.	
(a) Find the radius of the circle.	(2)
(b) Write down the equation of the circle C in the form	
$(x-a)^2 + (y-b)^2 = k$	
where a , b and k are constants to be found.	(2)
The circle C meets the y axis at the points A and B .	
The point A has the coordinates $(0, 2)$.	
(c) Find the coordinates of B .	(3)
(d) Find the equation of the tangent to the circle C at B .	(3)

Question 4 continued	
	TOTAL 10 MARKS
	TOTAL IV MAKKS

5	(a)	Show	that
---	-----	------	------

$$\int_{-2}^{x} (2p+4)dp = ax^2 + bx + c$$

where a, b and c are integers to be found.

(4)

(b) Hence, prove that	$\int_{0}^{\infty} (2p+4)dp \ge 0 \text{ for all values of } x.$	(2)
-	2	

Question 5 continued	
	TOTAL 6 MARKS

6

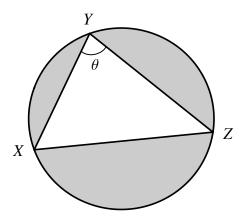


Figure 1

Figure 1 above shows a triangle XYZ that is inscribed in a circle C.

The triangle XYZ is such that XY = 6 cm, YZ = 7 cm and XZ = 8 cm.

The angle θ is the angle XYZ.

(a) Find
$$\cos \theta$$
. (2)

The radius R of the circle C satisfies

$$2R\sin\theta = |XZ|$$

- (b) Find the value of R, giving your answer in the form $k\sqrt{15}$.
- (c) Hence, show that the area of the shaded region in Figure 1 can be given by

$$\frac{1}{60} \Big(1024\pi - 315\sqrt{15} \Big) \tag{4}$$

Question 6 continued

Question 6 continued

Question 6 continued
MOTAL AMARKS
TOTAL 9 MARKS

7 (a) Using differentiation from first principles, find the derivative of $2x$.	(2)
The function f is defined such that	
$f(x) = \frac{px - \sqrt{x}}{x^2}, \ x > 0$	
where p is a constant.	
(b) Find, in terms of p , a simplified expression for $f'(x)$.	(3)
Given that the gradient of the normal to the curve $y = f(x)$ at $x = 1$ is $\frac{2}{5}$,	
(c) find the value of p .	(3)

Question 7 continued
TOTAL 8 MARKS
TOTAL 8 MARKS

8 Find the range of values of x that satisfy	$\frac{4+x}{x} > 3$	
		(4)

Question 8 continued
TOTAL 4 MARKS

9 Here are four statements:	
Statement A : the sum of any two rational numbers is rational	
Statement B : the sum of any two irrational numbers is irrational	
Statement \mathbf{C} : the product of any two rational numbers is rational	
Statement D : the product of any two irrational numbers is irrational	
Two of these statements are false.	
(i) Identify the two false statements.	(2)
(ii) Provide a suitable counterexample to each of the false statements.	(2)

Question 9 continued		
		$\overline{}$
7	TOTAL 4 MARKS	

10 Each second, two particles P and Q move by the vectors \mathbf{a} and \mathbf{b} respectively, where	
$\mathbf{a} = 6\mathbf{i} + 4\mathbf{j}$	
$\mathbf{b} = (\lambda + 2)\mathbf{i} + \mathbf{j}$	
and where λ is a scalar.	
(a) Find a unit vector in the direction of the vector a .	(2)
Given that the paths followed by the particles are parallel,	
(b) find the value of λ .	(2)
The particle P starts at the origin and the particle Q starts at the point $2\mathbf{i} - 3\mathbf{j}$.	
(c) (i) Show that the position of the particle P after two seconds is $12\mathbf{i} + 8\mathbf{j}$.	(1)
(ii) Find the exact distance between the particles P and Q after two seconds.	(4)

Question 10 continued	
	TOTAL 9 MARKS

11 (a) Find the solution to the equation $ln(2x+5) - ln(x) = 4$	(3)
(b) Hence, find the solution to the equation	(3)
$\ln(2^{u+1}+5) - \ln(2^u) = 4$	
Give your answer to two decimal places.	(2)
	` '

Question 11 continued
TOTAL 5 MARKS

12

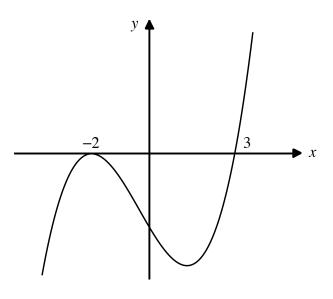


Figure 2

Figure 2 above shows the curve C with equation $y = (x - a)^2(x - b)$, where a and b are constants.

The curve C meets the x-axis at the points (-2,0) and (3,0), as shown in the diagram.

- (a) Write down the values of a and b. (1)
- (b) Write down the coordinates of the point where C intersects the y-axis. (1)
- (c) (i) Find the coordinates of the minimum point on C. (5)
 - (ii) Use further calculus to verify that the point found in (c/i) is a minimum. (3)

The line *L* has the equation y = k, where *k* is a constant.

(d) Write down t	the set of values	of k for which L :	intersects C once.	(2)
------------------	-------------------	------------------------	--------------------	-----

Question 12 continued			

Question 12 continued			

Question 12 continued	
	TOTAL 12 MARKS

13	The line l_1 passes through the points $A(4, 10)$ and $B(-1, 0)$.	
	The line l_2 is perpendicular to the line l_1 and passes through the point $C(4, k)$, where k is a constant.	
	(a) Find, in terms of k , the equation of the line l_2 .	(4)
	The line l_2 crosses the x-axis at the point D.	
	Given that the area of the triangle <i>OAD</i> is 10 units ² ,	
	(b) show that $k = -1$.	(3)
	(c) Hence, find the coordinates of intersection between the lines \boldsymbol{l}_1 and \boldsymbol{l}_2 .	(4)

Question 13 continued			

Question 13 continued

Question 13 continued	
	TOTAL 11 MARKS

14	The curve <i>C</i> has the equation $y = f(x)$, where $f'(x) = 2\sqrt{x}, \ x > 0$			
	The curve C passes through the point $(4, 1)$.			
	Find the equation of the tangent to C at the point where $x = 9$. Give your answer in the form $ax + by + c = 0$, where a , b and c are integers to be found.	(7)		

Question 14 continued	
END OF PAPER	TOTAL 7 MARKS
	TOTAL FOR PAPER IS 100 MARKS
	Copyright © 2018 crashMATHS Ltd.

