The normal distribution

Gold

The weight, in grams, of the contents of tins of sardines is normally distributed with mean μ and standard deviation 1.5. The value of μ can change as required.

- **a** Find the proportion of tins with contents weighing between 120.0 grams and 125.0 grams when $\mu = 122$.
- **b** (i) State the value of μ that would maximise the proportion of tins with contents weighing between 120.0 grams and 125.0 grams.
 - (ii) Find the proportion of tins with contents weighing between 120 grams and 125 grams where μ is equal to the value you specified in part **b(i)**.
- **c** Find the value of μ such that 99% of the tins have contents weighing more than 120.0 grams. Give your answer to one decimal place.

Silver

A machine cuts wood with width, X cm, modelled as a normal distribution such that $X \square N(60, \sigma^2)$.

- **a** Given that P(X < 57) = 0.2266, find the value of σ .
- **b** Find the 90th percentile of the widths.

Bronze

The random variable $X \square N(40,3^2)$. Write the following probabilities in terms of $\Phi(z)$ for some value z:

- **a** P(X < 45)
- **b** $P(X \ge 36)$