

Mark Scheme (Results)

October 2020

Pearson Edexcel GCE Advanced Level In Mathematics (9MA0) Paper 31 Statistics

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Autumn 2020
Publications Code 9MA0_31_2010_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification/indicative content will not be exhaustive.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, a senior examiner must be consulted before a mark is awarded.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 50.
- 2. These mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- **ft** follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- **cso** correct solution only. There must be no errors in this part of the question to obtain this mark
- **isw** ignore subsequent working
- awrt answers which round to
- SC: special case
- **o.e.** or equivalent (and appropriate)
- **d** or **dep** dependent
- **indep** independent
- **dp** decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- 4. All M marks are follow through.

A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but answers that don't logically make sense e.g. if an answer given for a probability is >1 or <0, should never be awarded A marks.

5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- 6. Where a candidate has made multiple responses <u>and indicates which response</u> they wish to submit, examiners should mark this response.

 If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most complete</u>.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used. If no such alternative answer is provided but the response is deemed to be valid, examiners must escalate the response for a senior examiner to review.

Qu 1	Scheme	Marks	AO
(a)	$A, C \underline{\text{or}} D, B \underline{\text{or}} D, C$	B1	1.2
(b)	[p = 0.4 - 0.07 - 0.24 =] 0.09	B1 (1)	1.1b
(c)	A and B independent implies	(1)	1.1b
	$P(A) \times 0.4 = 0.24$ or $(q+0.16+0.24) \times 0.4 = 0.24$	M1	
	so $P(A) = 0.6$ and $q = 0.20$	Alcso	1.1b
		(2)	
(d)(i)	$P(B' C) = 0.64$ gives $\frac{r}{r+p} = 0.64$ or $\frac{r}{r+"0.09"} = 0.64$ r = 0.64r + 0.64 "p" so $0.36r = 0.0576$ so $r = 0.16$	M1	3.1a
	r = 0.64r + 0.64 "p" so $0.36r = 0.0576$ so $r = 0.16$	A1	1.1b
(ii)	Using sum of probabilities = 1 e.g. " 0.6 " + 0.07 + " 0.25 " + s = 1	M1	1.1b
	so $s = 0.08$	A1 (4)	1.1b
		(4)	
		(8 mark	(s)
(a)	Notes		
(a)	B1 for one correct pair. If more than one pair they must all be correct. Condone in a correct probability statement such as $P(A \cap C) = 0$		
	or correct use of set notation e.g. $A \cap C = \emptyset$		
	BUT e.g. " $P(A)$ and $P(C)$ are mutually exclusive" alone is B0		
(b)	B1 for $p = 0.09$ (Maybe stated in Venn Diagram [VD]) [If values in VD and text conflict, take text or a value <u>used</u> in a late	er part]	
(c)	M1 for a correct equation in one variable for $P(A)$ or q using indep	endence	
	or for seeing both $P(A \cap B) = P(A) \times P(B)$ and $0.24 = 0.6 \times 0$.		
	A1cso for $q = 0.20$ or exact equivalent (dep on correct use of independent)	ndence)	
Beware	Use of $P(A) = 1 - P(B) = 0.6$ leading to $q = 0.2$ scores M0A0		
(d)(i)	1 st M1 for use of $P(B' C) = 0.64$ leading to a correct equation in r and	possibly	p.
	Can ft their p provided 0		
(ii)	1^{st} A1 for $r = 0.16$ or exact equivalent 2^{nd} M1 for use of total probability = 1 to form a linear equation in s. A	llow n a	r etc
	Can follow through their values provided each of p , q , r are in $[0, 1)$		
	2^{nd} A1 for $s = 0.08$ or exact equivalent		

Qu 2	Scheme	Marks	AO
(a)	Negative	B1	1.2
(b)(i) (ii)	Rainfall or hPa or Pascals or hectopascals or mb or millibars	(1) B1 B1ft	2.2b 1.1b
(c)	$H_0: \rho = 0$ $H_1: \rho \neq 0$ Critical value: $-0.361(0)$ r < -0.3610 so significant result and there is evidence of a correlation	(2) B1 M1 A1	2.5 1.1b 2.2b
(d)	between Daily Total Sunshine and Daily Maximum Relative Humidity Humidity is high and there is evidence of correlation and $r < 0$ So expect amount of sunshine to be lower than the average for Heathrow(oe)	(3) B1 (1)	2.2b
		(7 mark	s)
()	Notes P.1. for stating a greating "Negative alread" is P.0 though		
(a)	B1 for stating negative. "Negative skew" is B0 though		
(b)(i)	B1 for mentioning "rainfall" (allow "rain" or "precipitation") or "pressure" (if more than 1 answer both must be correct) NB the other quantitative variable for Perth is: Daily Mean Wind Speed and scores B0 [Not allowed "wind speed" since $r = +0.15$ and in winter might expect wind to raise temp] B1ft for giving the correct units. If Daily Mean Wind Speed (kn) or knots "Wind speed" and "knots" would score B0B1 but any other variable scores B0B0		
(c)	 B1 for both hypotheses correct in terms of ρ M1 for the correct critical value compatible with their H₁: allow ± 0.361(0) If the hypotheses are 1-tail then allow cv of ± 0.3061 e.g. Alternative hypothesis with r < ± 0.377 implies a one-tail test or H₀ as saying "H₀: there is no correlation, H₁: there is correlation" is two-tail If there are no hypotheses (or they are nonsensical) assume 2-tail so M1 from the correct critical value compatible with their H₁: allow ± 0.361(0) 		
	A1 for a correct conclusion in context based on comparing -0.377 with their Condone incorrect inequality e.g. $-0.3610 < -0.377$ as long as they rejude not accept contradictory statements such as "accept H_0 so there is evidence of a constant support for Stav's <u>belief</u> "(o.e.e.g. "claim") or "evidence of a consumment of sunshine and <u>humidity</u> " condone "negative correlation" or comments such is high amount of sunshine will be low"	ect H ₀ dence of rrelation b	etween
(d)	 B1 for stating low amount of sunshine (o. e.) and some reference to r < 0 or for Check for the following 2 features: (i) low sunshine: allow ≤ 5 hrs (LDS mean for 2015 is 5.3, humidity 97% is (ii) negative correlation may be described in words e.g. "high humidity gives or fog (LDS says >95% humidity is foggy) so less 	4.1, ≥ 97% s low sunsl	*

Qu 3	Scheme	Marks	AO	
(a)	[68 - 7 =] 61 (only)	B1	1.1b	
(b)	$[25-14] = \underline{11}$	B1 (1) (1)	1.1b	
(c)	$\left[\mu \text{ or } \overline{x} = \frac{607.5}{27} = \right] = \underline{22.5}$	B1	1.1b	
		(1)		
(d)	$\sigma = \sqrt{\frac{17623.25}{27}} - "22.5"^2 \text{or} \sqrt{146.4629}$	M1	1.1b	
	= 12.10218 awrt <u>12.1</u>	A1	1.1b	
(e)	$\mu + 3\sigma = "22.5" + 3 \times "12.1" = awrt 59 so only one outlier$	(2) B1ft (1)	1.1b	
(f)	Median increases implies that both values must be > 20 Mean is the same means that $a + b = 45$ So possible values are: e.g. $b = 21$ and $a = 24$ (o.e.)	M1 M1 A1	3.1b 1.1b 2.2b	
(g)	Both values will be less than 1 standard deviation from the mean and so the standard deviation of all 29 values will be smaller	(3) B1	2.4	
		(1)	rks)	
	Notes	(10 mas	(IXS)	
(a)	B1 for correctly interpreting the box plot to find the range (more than 1 answer	er is B0)		
(b)	B1 for correct understanding of IQR and answer of 11	B1 for correct understanding of IQR and answer of 11		
(c)	B1 for 22.5 only (or exact equivalent such as $\frac{45}{2}$). Allow 22 mins and 30 secs	S.		
(d)	M1 for a correct expression including square root. Allow $\sqrt{146}$ or better. Ft their mean A1 for awrt 12.1 NB Allow use of $s = 12.3327$ or awrt 12.3			
(e)	B1ft for a correct calculation or value based on their μ and σ and compatible	conclusio	n	
(f)	1^{st} M1 Correct start to the problem and a correct statement about the values based on median Allow if their final two values are both >20 2^{nd} M1 for a correct explanation leading to equation $a + b = 45$ (o.e. e.g. equidistant from mean)			
NB	Allow if their final two values sum to 45 A1 for a correct pair of values (both > 20 with a sum of 45) and at least some attempt to explain how their values satisfy at least one of the conditions (both > $20 \text{ or } a + b = 45$). Ignore $a = \text{or } b = \text{labels}$ The values for a and b do not need to be integers.			
(g)	B1 for a correct explanation. Must mention that both values are less than 1 sd (ft their answer to (d)) from	om the me	an	

(a)	$\frac{k}{10} + \frac{k}{20} + \frac{k}{30} + \frac{k}{40} + \frac{k}{50} = 1$ or $\frac{1}{600} (60k + 30k + 20k + 15k + 12k) = 1$	M1	1.1b
	So $k = \frac{600}{137}$ (*)	A1cso	1.1b
		(2)	
(b)	(Cases are:) $D_1 = 30, D_2 = 50$ and $D_1 = 50, D_2 = 30$ and $D_1 = 40, D_2 = 40$	M1	2.1
	$P(D_1 + D_2 = 80) = \frac{k}{50} \times \frac{k}{30} \times 2 + \left(\frac{k}{40}\right)^2$	M1	3.4
	= 0.0375619 awrt <u>0.0376</u>	A1 (3)	1.1b
(c)	Angles are: a , $a+d$, $a+2d$, $a+3d$	M1	3.1a
	$S_4 = a + (a + d) + (a + 2d) + (a + 3d) = 360$	M1	2.1
	2a + 3d = 180 (o.e.)	A1	2.2a
	Smallest angle is $a > 50$ consider cases:	M1	3.1b
	d = 10 so a = 75 or d = 20 so a = 60 [d = 30 gives a = 45 no good]		
	$P(D = 10 \text{ or } 20) = \frac{3k}{20} = \frac{90}{\underline{137}}$	A1	1.1b
		(5)	
	** .	(10 ma	rks)
(a)	Notes M1 for along use of sum of probabilities = 1 (all terms seen)		
(a)	M1 for clear use of sum of probabilities = 1 (all terms seen) A1 cso (*) M1 scored and no incorrect working seen.		
Verify	(Assume $k = \frac{600}{137}$) to score the final A1 they must have a <u>final</u> comment ":. $k = \frac{600}{137}$	<u>= 600 "</u>	
	(137) to 50010 till 111111 121 till 11110 111111 till 1111111 till 111111 till 11111 till 11111 till 111111 till 11111 till 11111 till 11111 till 11111 till 11111 till 111111 till 11111 till 111111 till 11111 till 11111 till 111111 till 111111 till 111111 till 111111 till 11	137	
(b)	1 st M1 for selecting at least 2 of the relevant cases (may be implied by their	correct pr	obs)
	e.g. allow 30, 50 and 50,30 i.e. D_1 and D_2 labels not required		
	2^{nd} M1 for using the model to obtain a correct expression for two different probabilities. May use letter k or their value for k .		
	Allow for $\frac{k}{50} \times \frac{k}{30} + \left(\frac{k}{40}\right)^2 \underline{\text{or}} 2 \times \left(\frac{k}{50} \times \frac{k}{30} + \left(\frac{k}{40}\right)^2\right)$		
	A1 for awrt 0.0376 (exact fraction is $\frac{705}{18769}$)		
(c)	1 st M1 for recognising the 4 angles and finding expressions in terms of <i>d</i> and their <i>a</i> 2 nd M1 for using property of quad with these 4 angles (equation can be un-simplified) Allow these two marks for use of a (possible) value of <i>d</i>		
	e.g. $a + a + 10 + a + 20 + a + 30 = 360$ (If at least 3 cases seen allow A1 for e.g. $4a = 300$) or allow M1M1 for a set of 4 angles with sum 360 and possible value of d (3 cases for A1)		
	e.g. (for <i>d</i> = 20) 60, 80, 100, 120		
	1st A1 for $2a + 3d = 180$ condition (o.e.) [Must be in the form $pa + qd = N$]		
	3^{rd} M1 for examining cases and getting $d = 10$ and $d = 20$ only		
	2^{nd} A1 for $\frac{90}{137}$ or exact equivalent		
	The correct answer and no obviously incorrect working will score 5/5 A final answer of awrt 0.657 (0.65693) with no obviously incorrect working scores 4/5		
	A final answer of awrt 0.037 (0.03033) with no obviously incorrect wo	TKIIIG SCO	168 4/3

Scheme

Marks

AO

Qu 4

Qu 5	Scheme	Marks	AO
(a)	{Let $X = \text{time spent}, P(X > 15) = $ } 0.105649 awrt 0.106	B1	1.1b
(b)	$H_0: \mu = 10 H_1: \mu > 10$	B1 (1)	2.5
	$\overline{X} \sim N \left(10, \left(\frac{4}{\sqrt{20}} \right)^2 \right); P(\overline{X} > 11.5) = 0.046766 \text{ [Condone 0.9532]}$	M1;A1	3.3;3.4
	[This is significant (< 5%) so] there is evidence to support the complaint	A1 (4)	2.2b
(c)(i)	[P(T < 2) =] 0.1956 awrt <u>0.196</u>	B1 (1)	1.1b
(ii)	Require $\frac{P(0 < T < 2)}{P(T > 0)} = \frac{0.119119}{0.923436}$; = 0.1289955 awrt 0.129	M1 A1;A1	3.4 1.1bx2
(iii)	The current model suggests non-negligible probability of <i>T</i> values < 0 which is impossible	B1 (3)	3.5b
(d)	Require t such that $P(T > t \mid T > 2) = 0.5$ or $P(T < t \mid T > 2) = 0.5$	M1 (1)	3.1b
	e.g. $\frac{P(T > t)}{P(T > 2)} = 0.5$; so $P(T > t) = 0.5 \times [1 - (c)(i)]$ or $P(T > t) = 0.5 \times 0.8043$	M1; A1ft	1.1b 3.4
	[i.e. $P(T > t) = 0.40$ implies] $\frac{t-5}{3.5} = 0.2533$ or $P(T < t) = "0.5978"$	M1	1.1b
	$t = 5.886$ or from calculator 5.867 so awrt $\underline{5.9}$	A1 (5)	1.1b
	Notes	(13 mai	(KS)
(a)	B1 for awrt 0.106 (from calculator) [Allow 10.6%]		
(b)	B1 for both hypotheses correct in terms of μ . M1 for selection of a correct model (sight or use of correct normal- may no 1 st A1 for use of this model to get probability allow 0.046~0.047 [Condone av test statistic $z = 1.677$ (awrt 1.68) and cv of 1.64 (or better) or CR	vrt 0.953]	·
	2^{nd} A1 (dep on 1^{st} A1 or at least $P(\overline{X} > 11.5) < 0.05$ (o.e.)) for a correct conclusion in context -must mention complaint /claim or tin	me/mins i	s > 10
SC	(M0 for \bar{X} ~N(11.5,) for correct probability and conclusion (score M0A0A		
(c)(i)	B1 for awrt 0.196 (from calculator) [Allow 19.6%]		
(ii)	M1 for a correct probability ratio expression (may be implied by 1 st A1 sc. 1 st A1 for a correct ratio of probabilities (both correct or truncated to 2 dp) 2 nd A1 for awrt 0.129	ored)	
(iii)	B1 for a suitable explanation of why model is not suitable based on negative Must say that a significant proportion of values < 0 (o.e.) e.g. $P(T > 0)$ shou or Difference between $P(T < 2 T > 0)$ and $P(T < 2)$ is too big (o.e.)		er to 1
(d)	1 st M1 for a correct conditional probability statement to start the problem or $\frac{1}{2}$ or $\frac{1}{2}$ for correct ratio of probability expressions [Must have $\frac{1}{2}$ or $\frac{1}{2}$ or $\frac{1}{2}$ for a correct equation for $\frac{1}{2}$ (o.e.) ft their answer to part (c) [May 3 rd M1 for attempt to find t (standardising and sight of 0.2533) or prepare to $\frac{1}{2}$ Arriving at $\frac{1}{2}$ median) = $1 - 0.5 \times$ "their 0.8043" will score 1 st 4 m 2 nd A1 for awrt 5.9	T < t] y be in a duse calc (f	iagram]

Sight of awrt 5.9 and at least one M mark scores 5/5 [Answer only send to review]

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom