| 1 | A sequence is defined by the recurrence relation $u_{n+1} = 1 - \frac{1}{u_n}$ , where $u_1 = 2$                                                                                                                                                                                                               |                      |  |  |  |  |  |  |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|--|--|
|   | a Write down the values of                                                                                                                                                                                                                                                                                     |                      |  |  |  |  |  |  |
|   | i $u_2$                                                                                                                                                                                                                                                                                                        |                      |  |  |  |  |  |  |
|   | ii $u_3$                                                                                                                                                                                                                                                                                                       |                      |  |  |  |  |  |  |
|   | iii $u_4$                                                                                                                                                                                                                                                                                                      | [6 marks]            |  |  |  |  |  |  |
|   | <b>b</b> Deduce the value of $u_{50}$                                                                                                                                                                                                                                                                          | [2]                  |  |  |  |  |  |  |
| 2 | Write the first four terms of each sequence, then describe the sequences as either increasing, decreasing or periodic.                                                                                                                                                                                         |                      |  |  |  |  |  |  |
|   | <b>a</b> $u_n = 2\cos(180n)^\circ$                                                                                                                                                                                                                                                                             |                      |  |  |  |  |  |  |
|   | <b>b</b> $u_n = 0.2^n + 4$                                                                                                                                                                                                                                                                                     | [3]                  |  |  |  |  |  |  |
|   | $u_n = n^2 + 4n - 2$                                                                                                                                                                                                                                                                                           | [3]                  |  |  |  |  |  |  |
| 3 | Write down the first four terms in the binomial expansion, in ascending of $x$ , of $(1-2x)^{-2}$ , stating the values of $x$ for which the expansion is valid                                                                                                                                                 |                      |  |  |  |  |  |  |
| 4 | A car costs £30 000. Its value depreciates by 20% per annum. Work out                                                                                                                                                                                                                                          |                      |  |  |  |  |  |  |
|   | a Its value after 1 year,                                                                                                                                                                                                                                                                                      | [1]                  |  |  |  |  |  |  |
|   | <b>b</b> Its value after 4 years,                                                                                                                                                                                                                                                                              | [2]                  |  |  |  |  |  |  |
|   | c The year in which it will be worth less than £5000                                                                                                                                                                                                                                                           | [4]                  |  |  |  |  |  |  |
| 5 | A sequence of terms is defined by the recurrence relation $u_{n+1} = 4 - ku_n$ , where $k$ is a constant.                                                                                                                                                                                                      |                      |  |  |  |  |  |  |
|   | Given that $u_1 = 3$                                                                                                                                                                                                                                                                                           | Given that $u_1 = 3$ |  |  |  |  |  |  |
|   | <b>a</b> Work out an expression in terms of $k$ for $u_2$                                                                                                                                                                                                                                                      | [2]                  |  |  |  |  |  |  |
|   | <b>b</b> Work out an expression in terms of $k$ for $u_3$                                                                                                                                                                                                                                                      | [2]                  |  |  |  |  |  |  |
|   | Given also that $u_1 + u_2 + u_3 = 9$                                                                                                                                                                                                                                                                          |                      |  |  |  |  |  |  |
|   | $\mathbf{c}$ Calculate the possible values of $k$                                                                                                                                                                                                                                                              | [4]                  |  |  |  |  |  |  |
| 6 | The sum to infinity of a geometric series is 20. The first term is 4                                                                                                                                                                                                                                           |                      |  |  |  |  |  |  |
|   | a Calculate the common ratio of the series.                                                                                                                                                                                                                                                                    | [3]                  |  |  |  |  |  |  |
|   | <b>b</b> Evaluate the third term of the series.                                                                                                                                                                                                                                                                | [2]                  |  |  |  |  |  |  |
| 7 | Adam plans to pay money into a savings scheme each year for 20 year pay £800 in the first year, and every year he will increase the amount t into the scheme by £100                                                                                                                                           |                      |  |  |  |  |  |  |
|   | <b>a</b> Show that he will pay £1000 into the scheme in year 3                                                                                                                                                                                                                                                 | [1]                  |  |  |  |  |  |  |
| b | Calculate the total amount of money that he will pay into the schen<br>the 20 years.                                                                                                                                                                                                                           | ne over              |  |  |  |  |  |  |
| C | Over the same 20 years, Ben will also pay money into a savings scheme. He will pay £610 in the first year, and every year he will increase the amount that he pays into the scheme by £ $d$ . Given that Adam and Ben will pay in exactly the same total amounts over the 20 years, calculate the value of $d$ |                      |  |  |  |  |  |  |

- When  $(1+ax)^n$  is expanded the coefficients of x and  $x^2$  are -4 and 20 respectively.
  - **a** Work out the value of *a* and the value of *n* [8]
  - **b** Evaluate the coefficient of  $x^3$ [2]
- The second term of a geometric series is 120 and the fifth term is 15. Work out
  - The common ratio of the series, [4]
  - The first term of the series. [1] b
  - The sum to infinity of the series. [2]
- 10 a [3]
- Use a formula to evaluate  $\sum_{r=1}^{40} (3r+1)$ Calculate the value of n for which  $\sum_{r=1}^{n} (3r+1) = 9800$ [4]
- Write down the first three terms in the binomial expansion of  $(1-2x)^{\frac{1}{2}}$ , 11 a in ascending powers of x[3]
  - **b** Write down the first three terms in the binomial expansion of  $(1+x)^{-\frac{1}{2}}$ , in ascending powers of x[3]
  - Use your answers to **a** and **b** to prove that  $\sqrt{\frac{1-2x}{1+x}} = 1 \frac{3}{2}x + \frac{3}{8}x^2 + \dots$ [4]
- 12 The fourth term of an arithmetic series is 11 and the sum of the first three terms is -3
  - [4] Write down the first term of the series.
  - Work out the common difference of the series. [1]
  - Given that the sum of the first *n* terms of the series is greater than 500, calculate the least possible value of n[5]
- 13 The first three terms of a geometric series are (3p-1), (p-3) and (2p) respectively.
  - Use algebra to work out the possible values of p [5]
  - For the negative value of *p*, calculate the sum to infinity of the series. [3] b
  - For the positive value of p, evaluate the sum of the first 999 terms of the series. [2]
- Write down the first four terms in the binomial expansion  $\sqrt{1-x}$ , in ascending 14 a [6] powers of x
  - **b** By substituting  $x = \frac{1}{4}$ , work out a fraction that is an approximation to  $\sqrt{3}$ [4]

| 15 | A salesman sells vacuum cleaners for £120 each. In one week, he receives 2% commission on the first vacuum cleaner he sells, 4% commission on the second vacuum cleaner he sells, with commission increasing in steps of 2%, so that he receives commission of 30% on the sale of his fifteenth vacuum cleaner. Commission stays fixed at 30% for the sale of all vacuum cleaners, after the sale of his fifteenth vacuum cleaner in that week.  a Calculate how much commission he receives in a week for the sale of |                                                                                                         |                                                                                                     |     |  |  |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----|--|--|--|--|
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i                                                                                                       |                                                                                                     |     |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ii<br>                                                                                                  | His fifth vacuum cleaner,                                                                           |     |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | iii                                                                                                     | His twentieth vacuum cleaner.                                                                       | [6] |  |  |  |  |
|    | In one week he sells 40 vacuum cleaners.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                         |                                                                                                     |     |  |  |  |  |
|    | <b>b</b> How much commission does he receive in total that week?                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         |                                                                                                     |     |  |  |  |  |
| 16 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The sum to infinity of a geometric series is 48, and the sum of the first two terms of the series is 45 |                                                                                                     |     |  |  |  |  |
|    | Th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e co                                                                                                    | mmon ratio of the series is $r$                                                                     |     |  |  |  |  |
|    | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>a</b> Prove that <i>r</i> satisfies the equation $1-16r^2=0$                                         |                                                                                                     |     |  |  |  |  |
|    | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cal                                                                                                     | culate the sum of the first four terms of the series.                                               | [4] |  |  |  |  |
| 17 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                         | ining programme of a cyclist requires her to cycle 3 km on the first day aing.                      |     |  |  |  |  |
|    | Th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Then, on each day that follows, she cycles 2 km more than she cycled on the day before.                 |                                                                                                     |     |  |  |  |  |
|    | a Calculate how far she cycles on the seventh day.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                         |                                                                                                     |     |  |  |  |  |
|    | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cal                                                                                                     | culate the total distance she has cycled by the end of the tenth day.                               | [2] |  |  |  |  |
|    | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | On                                                                                                      | which day of training will she cycle more than 100 km?                                              | [3] |  |  |  |  |
|    | d On which day of training will the total distance that she has cycled exceed 1000 km?                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |                                                                                                     |     |  |  |  |  |
| 18 | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                         | rite down the first three terms in the binomial expansion of $\sqrt{4-x}$ , ascending powers of $x$ | [7] |  |  |  |  |
|    | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | De                                                                                                      | duce an approximate value of $\sqrt{399}$ , giving your answer to 3 decimal places.                 | [5] |  |  |  |  |
| 19 | An investment scheme pays $3\%$ compound interest per annum. The interest is paid annually.                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                         |                                                                                                     |     |  |  |  |  |
|    | Αc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A deposit of £1000 is invested in this scheme at the start of each year.                                |                                                                                                     |     |  |  |  |  |
|    | The initial investment of £1000 is made at the start of year $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         |                                                                                                     |     |  |  |  |  |
|    | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Exp                                                                                                     | plain why the value of the investment at the start of year 2 is £2030                               | [2] |  |  |  |  |
|    | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cal                                                                                                     | lculate the value of the investment at the start of year 3                                          | [2] |  |  |  |  |
|    | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Wo                                                                                                      | ork out the year in which the total value of the investment exceeds £50 000                         | [4] |  |  |  |  |
| 20 | The sum of the first two terms of an arithmetic series is 2. The sum of the first ten terms of the series is 330                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         |                                                                                                     |     |  |  |  |  |
|    | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Wo                                                                                                      | ork out the common difference of the series.                                                        | [5] |  |  |  |  |
|    | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Wr                                                                                                      | ite down the first term of the series.                                                              | [1] |  |  |  |  |
|    | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                         | wen that the sum of the first $n$ terms of the series is equal to 1170, find $n$ value of $n$       | [4] |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                         |                                                                                                     |     |  |  |  |  |

| 21 | Given that $f(x) =$ | 5 <i>x</i>  | A                | B    |  |
|----|---------------------|-------------|------------------|------|--|
| 21 |                     | (2+x)(1-2x) | $=\frac{1}{2+x}$ | 1-2x |  |

- **a** Work out the values of the constants, *A* and *B* [5]
- **b** Write down the series expansion of f(x), in ascending powers of x, up to and including the term in  $x^3$  [11]
- c State the values of x for which the expansion is valid. [1]
- 22 Given that  $f(x) = \frac{13x 33}{(5-x)(1+3x)}$ 
  - **a** Work out the expansion of f(x) up to and including the term in  $x^3$  [14]
  - **b** State the values of x for which the expansion is valid. [1]
- 23 When a ball is dropped from a height of h metres above a hard floor it rebounds to a height of  $\frac{3}{4}h$

A ball is dropped from an initial height of 2 metres. Calculate

- a The height to which the ball rises after the first bounce, [2]
- b The total distance the ball has travelled when it hits the floor for the second time, [2]
- c The total distance that the ball travels. [3]
- 24 Given that x, 15 and y are consecutive terms of an arithmetic series, and 1, x and y are consecutive terms of a geometric series, work out the possible values of x and y[9]
- **25** By solving an equation, find the limit of these sequences as  $n \to \infty$ . Where appropriate, give answers in simplified surd form.

**a** 
$$u_{n+1} = 0.2u_n + 4$$
 [2]

- **b**  $u_{n+1} = 9 0.2u_n$  [2]
- $\mathbf{c} \quad u_{n+1} = \frac{1}{2} \left( \frac{1}{3} u_n 10 \right)$
- **d**  $u_{n+1} = (\sqrt{2} 1)u_n + 4$  [2]
- **e**  $u_{n+1} = \frac{1}{\sqrt{2}}u_n + \sqrt{2}$  [2]
- $\mathbf{f} \qquad u_{n+1} = 0.5u_n^2 + 0.5$