1	Integrate each of these expressions.	
	a $\frac{1}{x}$ [1] b $\sin(x-3)$ [2] c e^{2x} [2] d $\cos 2x$	[2]
2	$f'(x) = 2 + 3\sin 6x$	
	Find the equation of the curve $y = f(x)$, which passes through the point $(0, 1)$	[4]
3	a Find these integrals.	
	i $\int \frac{1}{x+3} dx$ ii $\int \sin x \cos^2 x dx$ iii $\int 2x(x^2+4)^3 dx$	[5]
	b Find the exact value of $\int_0^1 \frac{x}{x^2+1} dx$. Show your working.	[4]
4	a Use integration by parts to calculate each of these integrals.	
	$\int xe^x dx$	
	ii $\int x \sin x dx$	[5]
	$\frac{\kappa}{6}$	Į.
	b Show that the integral $\int x \sin 2x dx$ can be written in the form $\beta \sqrt{3} - \alpha \pi$	
	where α and β are constants to be found.	[4]
5	a Find the general solution to the differential equation $\frac{dy}{dx} = \frac{y}{x+1}$	
	Give your answer in the form $y = f(x)$ $dx = x+1$	[4]
	b Find the particular solution for curve $y = f(x)$ which passes through the point $(1, 8)$	[2]
6	a Express $\frac{10-13x}{(3+x)(1-2x)}$ in the form $\frac{A}{3+x} + \frac{B}{1-2x}$, where A and B are integers.	[3]
T-01		
	b Hence find the area bounded by the curve $y = \frac{10-13x}{(3+x)(1-2x)}$, the x-axis and the lines	
	x = -1 and $x = 0$. Show your working.	[4]
7	a Use the substitution $u = 1 + 2x$ to find $\int \frac{2x}{1 + 2x} dx$. Give your answer in terms of x	[5]
	b Find the exact area of the region bounded by the curve $y = \frac{2x}{1+2x}$, the x-axis and the lines $x = 0$ and $x = 1$. Show your working	
	the mies x - 0 and x - 1. Show your working.	[2]
8	Find the value of $\int_{1}^{2} \frac{4x+3}{2x^2+3x-2} dx$. Show your working.	[6]
	$f(x) = \frac{6x^3 + 14x^2 + 11x - 1}{3x^2 + 7x + 2}$	
T	$3x^2 + 7x + 2$ $B C$	F 43
	a Given that $f(x)$ can be expressed as $Ax + \frac{B}{x+2} + \frac{C}{3x+1}$, find the values of A , B and C . The gradient of a curve is given by $\frac{dy}{dx} = f(x)$	[4]
	The gradient of a curve is given by $\frac{1}{dx} = f(x)$	[4]
	b Find the equation of the curve given that it passes through the point (0, 0)	[4]
10	Find the general solution to the differential equation $\frac{dy}{dx} = \frac{5y}{2-3x-2x^2}$	
	Give your answer in the form $y = f(x)$	[7]

- **11** A radioactive material decays such that the rate of change of the number, *N*, of particles is proportional to the number of particles at time *t* days.
 - a Write down a differential equation in N and t [1]

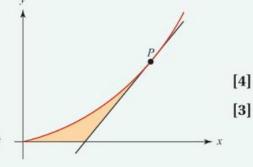
Initially there are N_0 particles and it takes T days for N to halve.

- **b** Solve your differential equation, giving the solution in terms of N_0 , t and T, with N as the subject. [6]
- 12 a Sketch the graphs of $y = \sin 2x$ and $y = \cos x$ on the same axes for $0 \le x \le \pi$ Give the points of intersection with the coordinate axes. [4]
 - b Find the values of x in the interval $[0, \pi]$ of the points of intersection of the two curves. Show your working. [4]
 - **c** Calculate the total area enclosed between the two curves in the interval $[0, \pi]$. Show your working. [4]
- **13** The curve C has a tangent at the point P as shown.

The equation of *C* is $y = xe^{\frac{x}{3}}$ and *P* has *x*-coordinate 3

- **a** Find the equation of the tangent to the curve at *P*. Show all your working.
- **b** Work out $\int xe^{\frac{x}{3}}dx$

The area bounded by the curve *C*, the tangent to the curve at *P* and the coordinate axes is shaded.



- c Calculate the exact value of the shaded area. Show your working. [5]
- **14** $f(x) = \frac{4}{\sqrt{x(x-4)}}$

Use the substitution $u = \sqrt{x}$ to find $\int f(x) dx$

Give your answer as a single logarithm in terms of x [8]

- **15** Use an appropriate substitution to find $\int x(2x-5)^4 dx$, give your answer in terms of x [5]
- **16 a** Calculate $\int x^2 \sin x dx$ [4]
 - b The area R is bounded by the curve $y = x^2 \sin x$, the x-axis and the lines x = 0 and $x = 2\pi$ Calculate the area of R. Show your working and give your answer in terms of π
- 17 At time t minutes, the volume of water in a cylindrical tank is $V \, \text{m}^3$. Water flows out of the tank at a rate proportional to the square root of V
 - a Show that the height of water in the tank satisfies the differential equation

$$\frac{\mathrm{d}h}{\mathrm{d}t} = -k\sqrt{h}$$

b Find the general solution of this differential equation in the form h = f(t) [3]

The tank is 2 m tall and is initially full. It then takes 2 minutes to fully empty.

c Show that the particular solution to the differential equation is $h = 2\left(1 - \frac{1}{2}t\right)^2$ [4]