FP1 - Matrix Algebra Questions ANSWERS (63 marks)

Jan 2013

Jan 201	5		
4.	$ \begin{array}{ccc} (a) \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \\ (b) \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} $	B1	(1)
	$(c) \mathbf{R} = \mathbf{Q}\mathbf{P}$	B1	(1)
	(d) $R = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	B1	(2)
Notes	(e) Reflection in the y axis		(2) [7]
	(a) and (b) Signs must be clear for B marks.(c) Accept QP or their 2x2 matrices in the correct order only for B1.		
	(d) M for their \mathbf{QP} where answer involves ± 1 and 0 in a 2x2 matrix, A for correct answer only.		
	(e) First B for Reflection, Second B for 'y axis' or 'x=0'. Must be single transformation. Ignore any superfluous information.		

Jan 2013

	1	
6.	(a) Determinant: $2 - 3a = 0$ and solve for $a =$	M1
	So $a = \frac{2}{3}$ or equivalent	A1 (2)
	(b) Determinant: $(1\times 2)-(3\times -1)=5$ (Δ)	
	$Y^{-1} = \frac{1}{5} \begin{pmatrix} 2 & 1 \\ -3 & 1 \end{pmatrix} \qquad \begin{bmatrix} = \begin{pmatrix} 0.4 & 0.2 \\ -0.6 & 0.2 \end{pmatrix} \end{bmatrix}$	M1A1 (2)
	(c) $\frac{1}{5} \begin{pmatrix} 2 & 1 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 1 - \lambda \\ 7\lambda - 2 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 2 - 2\lambda + 7\lambda - 2 \\ -3 + 3\lambda + 7\lambda - 2 \end{pmatrix} = \begin{pmatrix} \lambda \\ 2\lambda - 1 \end{pmatrix}$	M1depM1A1 A1 (4) [8]
	Alternative method for (a)	
	Alternative method for (c)	M1M1
	Solve to give $x = \lambda$ and $y = 2\lambda - 1$	A1A1
Notes	(b) M for $\frac{1}{\text{their det}} \begin{pmatrix} 2 & 1 \\ -3 & 1 \end{pmatrix}$	
	(c) First M for their $\mathbf{Y}^{-1}\mathbf{B}$ in correct order with B written as a 2x1 matrix, second M dependent on first for attempt at multiplying their matrices resulting in a 2x1 matrix, first A for λ , second A for $2\lambda-1$	
	Alternative for (c) First M to obtain two linear equations in x, y, λ Second M for attempting to solve for x or y in terms of λ	

June 2012

2. (a)	$\mathbf{A} = \begin{pmatrix} 3 & 1 & 3 \\ 4 & 5 & 5 \end{pmatrix},$	$\mathbf{B} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 0 & -1 \end{pmatrix}$	
	$\mathbf{AB} = \begin{pmatrix} 3 & 1 & 3 \\ 4 & 5 & 5 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 0 & -1 \end{pmatrix}$		
	$= \begin{pmatrix} 3+1+0 & 3+2-3 \\ 4+5+0 & 4+10-5 \end{pmatrix}$	A correct method to multiply out two matrices. Can be implied by two out of four correct (unsimplified) elements in a dimensionally correct matrix. A 2x2 matrix with a number or a calculation at each corner.	M1
	$= \begin{pmatrix} 4 & 2 \\ 9 & 9 \end{pmatrix}$	Correct answer	A1
	A correct answer with no wo	rking can score both marks	
			[2]
(b)	$\mathbf{C} = \begin{pmatrix} 3 & 2 \\ 8 & 6 \end{pmatrix}, \ \mathbf{D} = \begin{pmatrix} 5 & 2k \\ 4 & k \end{pmatrix}$), where k is a constant,	
	$\mathbf{C} + \mathbf{D} = \begin{pmatrix} 3 & 2 \\ 8 & 6 \end{pmatrix} + \begin{pmatrix} 5 & 2k \\ 4 & k \end{pmatrix} = \begin{pmatrix} 8 & 2k+2 \\ 12 & 6+k \end{pmatrix}$	An attempt to add C to D. Can be implied by two out of four correct (unsimplified) elements in a <u>dimensionally correct</u> matrix.	M1
	\mathbf{E} does not have an inverse \Rightarrow det $\mathbf{E} = 0$.		
	8(6+k) - 12(2k+2)	Applies " $ad - bc$ " to E where E is a 2x2 matrix.	M1
	8(6+k) - 12(2k+2) = 0	States or applies $det(\mathbf{E}) = 0$ where $det(\mathbf{E}) = ad - bc$ or $ad + bc$ only and \mathbf{E} is a 2x2 matrix.	M1
	Note $8(6+k) - 12(2k+2) = 0$ or $8(6+k) - 12(2k+2) = 0$	k) = 12(2 k + 2) could score both M's	
	48 + 8k = 24k + 24		
	24 = 16k		A1
	$k = \frac{3}{2}$		A1 oe
			[4] 6 marks
			o marks

June 2012

9.	$\det \mathbf{M} = 3(-5) - (4)(2) = -15 - 8 = \underline{-23}$	<u>-23</u>	B1
(a)			[1]
(b)	Therefore, $\begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix} \begin{pmatrix} 2a - 7 \\ a - 1 \end{pmatrix} = \begin{pmatrix} 25 \\ -14 \end{pmatrix}$	Using the information in the question to form the matrix equation. Can be implied by any of the correct equations below.	M1
	Either, $3(2a-7) + 4(a-1) = 25$ or $2(2a-7) - 5(a-1) = -14$ or $3(2a-7) + 4(a-1) = 25 = 25 = 25 = 25 = 25 = 25 = 25 = 2$	Any one correct equation (unsimplified) inside or outside matrices	A1
	giving $a = 5$	a = 5	A1
			[3]
(c)	Area(ORS) = $\frac{1}{2}(6)(4)$; = 12 (units) ²	M1: $\frac{1}{2}$ (6)(Their $a-1$) A1: 12 cao and cso	M1A1
	Note A(6, 0) is sometimes misinterpreted as (0, 6) – this is the wrong triangle and scores M0	
	e.g.1/2x6x		
			[2]
(d)	$Area(OR'S') = \pm 23 \times (12)$	$\pm \det \mathbf{M} \times (\text{their part } (c) \text{ answer})$	M1
		276 (follow through provided area > 0)	A1 √
	A method not involving the determinant requires	the coordinates of R' to be calculated ((18,	
	12)) and then a correct method for the area e.g. (
			[2]
	Rotation; 90° anti-clockwise (or 270° clockwise)	B1: Rotation, Rotates, Rotate, Rotating (not turn)	
(e)	about (0, 0).	B1:90° anti-clockwise (or 270° clockwise)	B1;B1
		about (around/from etc.) (0, 0)	
		, , , ,	[2]
(f)	M = BA	M = BA, seen or implied.	M1
	$\mathbf{A}^{-1} = \frac{1}{(0)(0) - (1)(-1)} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}; = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	-	A1
	$\mathbf{B} = \begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	Applies M(their A ⁻¹)	M1
	$\mathbf{B} = \begin{pmatrix} -4 & 3 \\ 5 & 2 \end{pmatrix}$		A1
	NB some candidates state $\mathbf{M} = \mathbf{AB}$ and then calculate \mathbf{MA}^{-1} or state $\mathbf{M} = \mathbf{BA}$ and then calculate $\mathbf{A}^{-1}\mathbf{M}$. These could score M0A0 M1A1ft and M1A1M0A0 respectively.		[4]
			14 marks
	Special c	ase	
(f)	M = AB	$\mathbf{M} = \mathbf{A}\mathbf{B}$, seen or implied.	M0
		$\mathbf{A}^{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	A0
	$\mathbf{B} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix} = \begin{pmatrix} 2 & -5 \\ -3 & -4 \end{pmatrix}$	Applies (their A ⁻¹)M	M1A1ft

Jan 2012

	1			
4(a)	$ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 \\ 1 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 4 \\ 1 & 2 & 2 \end{pmatrix} $	Attempt to multiply the right way round with at least 4 correct elements	M1	
	T' has coordinates $(1,1)$, $(1,2)$ and $(4,2)$ or $\begin{pmatrix} 1\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\2 \end{pmatrix}$, $\begin{pmatrix} 4\\2 \end{pmatrix}$ NOT just $\begin{pmatrix} 1\\1\\2 \end{pmatrix}$ $\begin{pmatrix} 2\\2 \end{pmatrix}$	Correct coordinates or vectors	A1	
				(2)
(b)	Deflection in the line were	Reflection	B1	
	Reflection in the line $y = x$	y = x	B1	
	Allow 'in the axis' 'about the line' $y = x$ etc. Provided bot reference to the origin unless there is a c			
				(2)
(c)	$\mathbf{QR} = \begin{pmatrix} 4 & -2 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix}$	2 correct elements	M1	
		Correct matrix	A1	
	Note that $\mathbf{RQ} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 4 & -2 \\ 3 & -1 \end{pmatrix} = \begin{pmatrix} 10 \\ 24 \end{pmatrix}$	$\begin{pmatrix} -4 \\ -10 \end{pmatrix}$ scores M0A0 in (c) but		
	allow all the marks in (d) and (e)			
				(2)
(d)	$\det(\mathbf{QR}) = -2 \times 2 - 0 = -4$	"-2"x"2" – "0"x"0"	M1	
	St.(QL) 2/2 0 1	-4	A1	
	Answer only scores 2/2			(2)
	1			
	det (QR) scores M0			
(e)	Area of $T = \frac{1}{2} \times 1 \times 3 = \frac{3}{2}$	Correct area for T	B1	
	3	Attempt at " $\frac{3}{2}$ "×±"4"	M1	
	Area of $T'' = \frac{3}{2} \times 4 = 6$	6 or follow through their det(QR) x Their triangle area provided area > 0	A1ft	
1		provided area > 0	L	

1		I	ı	1
3. (a)	$\mathbf{A} = \begin{pmatrix} 1 & \ddot{\mathbf{O}} \ 2 \\ \ddot{\mathbf{O}} \ 2 & -1 \end{pmatrix}$			
(i)	$\mathbf{A}^2 = \begin{pmatrix} 1 & \ddot{\mathbf{O}} \ 2 \\ \ddot{\mathbf{O}} \ 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & \ddot{\mathbf{O}} \ 2 \\ \ddot{\mathbf{O}} \ 2 & -1 \end{pmatrix}$			
	$ = \begin{pmatrix} 1+2 & \ddot{O} \ 2-\ddot{O} \ 2 \\ \ddot{O} \ 2-\ddot{O} \ 2 & 2+1 \end{pmatrix} $	A correct method to multiply out two matrices. Can be implied by two out of four correct elements.	M1	
	$= \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$	Correct answer	A1	(2)
				(2)
		Enlargement;	B1;	
(ii)	Enlargement; scale factor 3, centre (0, 0).	scale factor 3, centre (0, 0)	B1	
	Allow 'from' or 'about' for centre and 'C	O' or 'origin' for (0, 0)		
	Anow from or about for centre and c	or origin for (0, 0)		(2)
				` '
(b)	$\mathbf{B} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$			
	Reflection; in the line $y = -x$.	Reflection;	B1;	
	•	y = -x	B1	
	Allow 'in the axis' 'about the lin The question does not specify a <u>single</u> transformatio combinations that are correct e.g. Anticlockwise rotat	n so we would need to accept any		(2)
	by a reflection in the x -axis is acceptable. In cases lil			
	completely correct and scored as B2 (no part mark			
	Leader.			
(c)	$\mathbf{C} = \begin{pmatrix} k+1 & 12 \\ k & 9 \end{pmatrix}, \ k \text{ is a constant.}$			
	C is singular \Rightarrow det C = 0. (Can be implied)	det C = 0	B1	
	Special Case $\frac{1}{9(k+1)-12k} = 0$ B	l(implied)M0A0		
	9(k+1) - 12k = 0	Applies 9(k+1) - 12k	M1	
	9k + 9 = 12k	1		
	9 = 3k			
	k = 3	k = 3	A1	
	k = 3 with no working can scor			(3)
I	2		1	. /

June 2011

1	1			
5.	$\mathbf{A} = \begin{pmatrix} -4 & a \\ b & -2 \end{pmatrix}, \text{ where } a \text{ and } b \text{ are constants.}$			
	(b -2)			
	(4) (2)			
(a)	$A \begin{pmatrix} 4 \\ 6 \end{pmatrix} = \begin{pmatrix} 2 \\ -8 \end{pmatrix}$			
	(6) (6)			
	(-4 a)(4) (2)	Using the information in the question to form		
	Therefore, $\begin{pmatrix} -4 & a \\ b & -2 \end{pmatrix} \begin{pmatrix} 4 \\ 6 \end{pmatrix} = \begin{pmatrix} 2 \\ -8 \end{pmatrix}$	the matrix equation. Can be implied by both	M1	
	Do not allow this mark for other incorrect statem	correct equations below.		
	e.g. $\binom{4}{6}\binom{-4}{b}\binom{-2}{-2} = \binom{2}{-8}$ would be M0 unless follows:			
	So, $-16 + 6a = 2$ and $4b - 12 = -8$	Any one correct equation.		
	(-16+6a) (2)	A	M1	
	Allow $\begin{pmatrix} -16+6a\\4b-12 \end{pmatrix} = \begin{pmatrix} 2\\-8 \end{pmatrix}$	Any correct horizontal line		
	giving $a = 3$ and $b = 1$.	Any one of $a = 3$ or $b = 1$.	A1	
	3	Both $a = 3$ and $b = 1$.	A1	
				(4)
4.	1.4 0 (2)(1) 5	Finds determinant by applying 8 – their ab.	M1	
(b)	$\det \mathbf{A} = 8 - (3)(1) = 5$	$\det \mathbf{A} = 5$	A1	
	Special case: The equations $-16 + 6b = 2$ and $4a - 12 = -8$ give $a = 1$ and $b = 3$. This comes from incorrect matrix multiplication. This will score nothing in (a) but allow all the marks in (b).			
	Note that $\det \mathbf{A} = \frac{1}{8 - ab}$ scores M0 here but the	ne following 2 marks are available. However,		
	beware det A = $\frac{1}{8 - ab} = \frac{1}{5} \Rightarrow area S = \frac{30}{\frac{1}{5}} = 150$			
	This scores M0A0 M1A0			
	Area $S = (\det A)(Area R)$			
	Area $S = 5 \times 30 = 150 \text{ (units)}^2$	30 their det A or 30×(their det A)	M1	
	The state of the s	150 or ft answer	A1 √	-
	If their det A < 0 then allow ft provided final answer > 0		111 V	(4)
	In (b) Candidates may take a more laborious route for the area scale factor and find the area of			(-)
	the unit square, for example, after the transformation represented by A. This needs to be a			
	complete method to score any marks. Correctly answer 5 A1. Then mark as original scheme.	establishing the area scale factor M1. Correct		
	The state of the s			