- Show that the equation $x^3 + 2x^2 3x 2 = 0$ has a root between x = 1 and x = 2[2 marks]
- Given that $f(x) = x \sin x$, where x is in radians, show that f(x) = 0 has a root in the interval 3 < x < 3.5[2]
- Show that the equation $x^3 4x 1 = 0$ has a root in the interval (2, 2.5) 3 [2]
 - Use the iterative formula $x_{n+1} = \sqrt{4 + \frac{1}{x_n}}$, starting with $x_1 = 2$ to find x_2 and x_3 to 2 dp. Use the iterative formula $x_{n+1} = \ln(5 x_n)$, starting with $x_1 = 1$ to find, to 2 decimal b [3]
- places, a root of the equation $e^x + x 5 = 0$ [4]
 - Prove that your solution is correct to 2 decimal places. [3]
- Show that the equation $x^3 3x + 1 = 0$ has a root between 1 and 2 [2] a
 - Taking 2 as a first approximation, use the Newton-Raphson process twice to b find an approximation to the root of $x^3 - 3x + 1 = 0$, to 2 dp. [4]
- You are given that a particle's motion is modelled by $f(x) = 2x^4 3x^3 + 4x$
 - Use the Newton-Raphson process twice, taking x = -1 as the first approximation to find the negative root of the equation f(x) = 0 to 2 decimal places. [4]
 - Prove that your solution is correct to 2 dp. [2]
- Use the trapezium rule with four strips to estimate the integral $\int \sin^3 x \, dx$, to 3 sf. [4]
- Use the trapezium rule with four ordinates to estimate the integral $\int \tan^3 x \, dx$, to 3 sf. [4]
- An object's temperature is modelled by $f(x) = 5x e^x$
 - Prove that there is a root of f(x) = 0 between x = 0 and x = 0.5The graph of y = f(x) is shown.

[2]

- Show that x = 2.5 is the root, correct to 1 dp. [3]
- Sketch, on the same axes, the graphs of y = x + 1 and $y = \frac{4}{x}$ 10 a [2]
 - Use your graphs to explain how many roots there are to the equation $x+1=\frac{4}{x}$ [1]
 - Show that the equation $x+1=\frac{4}{x}$ has a root in the interval (1.5, 1.6) [3]
 - Find the solutions to the equation $x+1=\frac{4}{x}$, give your answers to 3 significant figures. [2]

11 The graphs of $y = e^x \sin x$ and y = x + 2 are shown, where x is in radians.

[2]

- [=
- 12 a Show that the equation $x^3 3x^2 5 = 0$ can be written $x = \sqrt{\frac{5}{x}} + 3x$ b Use the iteration formula $x_{n+1} = \sqrt{\frac{5}{x_n}} + 3x_n$, starting with $x_1 = 3$ to find x_5

a Use the iteration formula $x_{n+1} = \frac{7 - 2e^{x_n}}{3}$ with $x_1 = 0.8$ to find x_2 , x_3 , x_4 , x_5 to 2 decimal places.

- **b** Explain what is happening in this case.
- **c** Now derive a different iteration formula and, again using $x_1 = 0.8$. calculate x_2 , x_3 , x_4 , x_5 to 2 dp.

using
$$x_1 = 0.8$$
. calculate x_2 , x_3 , x_4 , x_5 to 2 dp. [4]

14 a Sketch the graphs of $y = x - 3$ and $y = \sqrt{x}$ on the same axes. [2]

- **b** Use an appropriate iteration formula with $x_1 = 2$ to find a root of $\sqrt{x} = x 3$ to 2 dp. [4]
- c i Draw a suitable diagram to illustrate the results of the first two iterations. [3]
 - ii Write down the name of this diagram. [1]

15 a Sketch the graphs of
$$y = \ln x$$
 and $y = e^x - 5$ on the same axes. [3]

- **b** Explain how many roots the equation $\ln x = e^x 5$ has. [1]
- **c** Show that one of the roots occurs between x = 1.6 and x = 1.8
- d Use the Newton-Raphson process, to find this root correct to 2 decimal places. [4]
- 16 a Show that the equation $x^3 + 4x 3 = 0$ can be written $x = a(b x^3)$, where a and b are constants to be found. [2]
 - **b** Use the iteration formula $x_{n+1} = a(b-x_n^3)$ for the values of a and b found in part a with $x_1 = 0.1$ to find x_5 correct to 2 significant figures. [3]
 - c i Draw a suitable diagram to illustrate the results of the first 3 iterations. [2]
 - ii Write down the name of this diagram. [1]

17 Use the Newton-Raphson method to find, to 3 significant figures, the solution of the equation
$$x \sin x = 2 \ln x$$
, where x is in radians, which is near 2 [5]

a Use the trapezium rule with five strips to estimate, to 4 significant figures, the area enclosed by the curve, the x-axis and the line x = 1

b State without further calculation whether this will be an overestimate or an underestimate of the actual area. Justify your answer.

[3]

c i Use integration by parts to find the actual area.

[2]

[1]

- ii Calculate the percentage error in your approximation.
- **19** The graph of $y = x^3 5x 3$ is shown.

- **a** How many solutions are there to the equation $x^3 5x 3 = 0$? Justify your answer.
- **b** Show that $y = x^3 5x 3 = 0$ can be written in the form $x = \pm \sqrt{a + \frac{b}{x}}$, where a and b are constants to be found. [3]
- **c** Use the iteration formula $x_{n+1} = \sqrt{a + \frac{b}{x_n}}$ with the values you have found for a and b to calculate the positive root of the equation correct to 3 significant figures. [3]
- **d** Use Newton-Raphson to find the largest negative root, correct to 2 significant figures. [4]
- e Verify that the smallest negative root is -1.83 to 3 sf. [2]
- **20** Explain how the change of sign method will fail to find a root, α , to f(x) = 0 in these cases

a
$$f(x) = \frac{1}{x-3}$$
 for 2.5 < α < 3.5

b
$$f(x) = (3x-2)(2x-1)(x-4)$$
 for $0 < \alpha < 1$ [2]

21 Use the Newton-Raphson method to find a root, correct to 2 decimal places, to the equation $\sin^2 x = e^{-x}$, where *x* is in radians, using

a
$$x_1 = 1$$
 [3] **b** $x_1 = 3$

- 22 a Use the trapezium rule with five ordinates to estimate, to 3 significant figures, the area enclosed by the curve with equation $y = \sqrt{\ln x}$, the x-axis and the line x = 2 [4]
 - b Comment on the suggestion that the actual area is close to 0.5 [2]

23 $f(x) = x \ln x - 1, x > 0$

a Find an interval of size 0.2 that contains the solution to f(x) = 0 [3]

b Use Newton-Raphson to approximate the root of the equation f(x) = 0

Ensure your answer is correct to 3 decimal places. [8]