Recurrence relations ## Gold A sequence u_1, u_2, \dots is given by: $$u_{n+1} = ku_n + 3$$ where k is a positive constant. You are given that $u_1 = 2$. - **a** Find expressions for u_2 and u_3 in terms of k. - **b** Given that u_3 is double u_2 , find the value of k. ## **Silver** A sequence u_1, u_2, \dots is given by: $$u_{n+1} = 5u_n + c$$ where c is a constant. You are given that $u_1 = 1$. - **a** Find expressions for u_2, u_3 and u_4 in terms of c. - **b** Given that u_4 is 150 more than u_3 , find the value of c. ## **Bronze** A sequence u_1, u_2, \dots is given by: $$u_{n+1} = 5u_n + 4$$. If $u_1 = -2$, find the values of u_2 , u_3 and u_4 .