<u>S1 Discrete Random Variables Questions</u>

June 2011

3. The discrete random variable Y has probability distribution

у	1	2	3	4
P(Y=y)	a	b	0.3	С

where a, b and c are constants.

The cumulative distribution function F(y) of Y is given in the following table

у	1	2	3	4
F(y)	0.1	0.5	d	1.0

where d is a constant.

(a) Find the value of a, the value of b, the value of c and the value of d.

(5)

(b) Find $P(3Y + 2 \ge 8)$.

(2)

June 2011

8. A spinner is designed so that the score S is given by the following probability distribution.

S	0	1	2	4	5
P(S=s)	p	0.25	0.25	0.20	0.20

(a) Find the value of p.

(2)

(b) Find E(S).

(2)

(c) Show that $E(S^2) = 9.45$

(2)

(d) Find Var(S).

(2)

Tom and Jess play a game with this spinner. The spinner is spun repeatedly and S counters are awarded on the outcome of each spin. If S is even then Tom receives the counters and if S is odd then Jess receives them. The first player to collect 10 or more counters is the winner.

(e) Find the probability that Jess wins after 2 spins.

(2)

(f) Find the probability that Tom wins after exactly 3 spins.

(4)

(g) Find the probability that Jess wins after exactly 3 spins.

(3)

Jan 2011

6. The discrete random variable X has the probability distribution

x	1	2	3	4
P(X = x)	k	2 <i>k</i>	3 <i>k</i>	4 <i>k</i>

(a) Show that k = 0.1

(1)

Find

(b) E(X)

(2)

(c) $E(X^2)$

(2)

(d) Var(2-5X)

(3)

Two independent observations X_1 and X_2 are made of X.

(e) Show that $P(X_1 + X_2 = 4) = 0.1$

(2)

(f) Complete the probability distribution table for $X_1 + X_2$.

(2)

+								
	У	2	3	4	5	6	7	8
	$\mathbf{P}(X_1 + X_2 = y)$	0.01	0.04	0.10		0.25	0.24	

(g) Find $P(1.5 < X_1 + X_2 \le 3.5)$

(2)

<u>June 2010</u>

3. The discrete random variable X has probability distribution given by

x	-1	0	1	2	3
P(X = x)	1/5	а	10	а	1 5

where a is a constant.

(a) Find the value of a.

(2)

(b) Write down E(X).

(1)

(c) Find $\underline{\mathrm{Var}}(X)$.

(3)

The random variable Y = 6 - 2X.

(d) Find Yar(Y).

(2)

(e) Calculate $P(X \ge Y)$.

(3)

June 2009

6. The discrete random variable *X* has probability function

$$P(X = x) = \begin{cases} a(3-x) & x = 0, 1, 2 \\ b & x = 3 \end{cases}$$

(a) Find P(X = 2) and copy and complete the table below.

x	0	1	2	3
P(X=x)	3 <i>a</i>	2 <i>a</i>		b

(1)

Given that E(X) = 1.6,

(b) find the value of a and the value of b.

(5)

Find

(c)
$$P(0.5 < X < 3)$$

(d)
$$E(3X-2)$$
.

(e) Show that the
$$Var(X) = 1.64$$
 (3)

(f) Calculate
$$Var(3X-2)$$
. (2)

Jan 2012

3. The discrete random variable *X* can take only the values 2, 3, 4 or 6. For these values the probability distribution function is given by

x	2	3	4	6
P(X=x)	<u>5</u> 21	$\frac{2k}{21}$	<u>7</u> 21	$\frac{k}{21}$

where k is a positive integer.

(a) Show that k = 3 (2)

Find

(c)
$$E(X)$$
 (2)

(d)
$$E(X^2)$$
 (2)

(e)
$$Var(7X - 5)$$
 (4)

Jan 2007

3. The random variable X has probability function

$$P(X = x) = \frac{(2x-1)}{36}$$
 $x = 1, 2, 3, 4, 5, 6.$

(a) Construct a table giving the probability distribution of X.

(3)

Find

(b) $P(2 \le X \le 5)$,

(2)

(c) the exact value of E(X).

(2)

(d) Show that Var(X) = 1.97 to 3 significant figures.

(4)

(e) Find Var(2 - 3X).

(2)