

[2]

- **b** The tension in AP

 A partials P of mass 0.4 kg mayor under the action of a single force,
- A particle, P, of mass 0.4 kg moves under the action of a single force, F Newtons. At time t, the velocity, $\mathbf{v} \, \mathbf{m} \, \mathbf{s}^{-1}$ of P is given by $\mathbf{v} = \begin{pmatrix} 3t^2 + 5 \\ 14t 2 \end{pmatrix} \mathbf{m} \, \mathbf{s}^{-1}$ At time t = 0, P is at the origin. Work out
 - **a** F when t = 2. Show all your working. [5]
 - **b** The distance of P from the origin when t=2
- A ball is hit from a point that is one metre above horizontal ground, with a velocity of $20\,\mathrm{m\,s^{-1}}$ at an angle of elevation of α where $\tan\alpha=\frac{4}{3}$. The ball just clears a vertical wall, which is 12 metres horizontally from the point where the ball was hit. Work out (to 3 sf)
 - a The height of the wall, [7]
 - **b** The speed of the ball at the instant when it passes over the wall, [4]
 - **c** The direction in which the ball is travelling at the instant when it passes over the wall.
- 11 At time t = 0, a particle, P, is at rest at the point (2,0). At time t seconds, its acceleration, $\mathbf{a} \, \text{m s}^{-2}$ is given by $\mathbf{a} = \begin{pmatrix} 16 \cos 4t \\ \sin t 2\sin 2t \end{pmatrix}$. Work out
 - a The acceleration of P when $t = \frac{\pi}{2}$
 - **b** The velocity of P when $t = \frac{\pi}{4}$ [7]
 - **c** The position of P when $t = \pi$ [7]
- Two boats, P and Q, are travelling with constant velocities $(3\mathbf{i} 8\mathbf{j}) \,\mathrm{km} \,\mathrm{h}^{-1}$ and $(-7\mathbf{i} + 12\mathbf{j}) \,\mathrm{km} \,\mathrm{h}^{-1}$ respectively, relative to a fixed origin O. At noon, the position vectors of P and Q are $(4\mathbf{i} + 11\mathbf{j}) \,\mathrm{km}$ and $(9\mathbf{i} + 3.5\mathbf{j}) \,\mathrm{km}$ respectively. At time t hours after noon, the position vectors of P and Q, relative to O, are \mathbf{S}_{p} and \mathbf{S}_{Q} . Write
 - **a** An expression in terms of t for S_p
 - **b** An expression in terms of t for S_Q

At a time, t hours after noon, the distance between the boats is given by d km

- Prove that $d^2 = (-5 + 10t)^2 + (7.5 20t)^2$
- **d** Work out the time at which the boats are closest together. Show all your working. [5]
- **e** Work out the distance between the boats at the time when they are closest together. [2]
- 13 A particle is projected from a point O, with an initial velocity of u m s⁻¹, at an angle of α to the horizontal. In the vertical plane of projection, taking x and y as the horizontal and vertical axes respectively
 - a Show that $y = x \tan \alpha \frac{gx^2}{2u^2} \sec^2 \alpha$ [5]

Given that u = 42 and that the particle passes through the point (60, 70)

Find the two possible angles of projection. Take $g = 9.8 \text{ m s}^{-2}$ and show all your working. [6]