Starter Question

Three particles A , B and C are at rest on a smooth horizontal table. The mass of A is 4	kg, the
mass of B is 3 kg and the mass of C is 3 kg. The particle A is given an impulse to the r	
magnitude 10 N s ⁻¹ . The particle A moves towards and collides directly with the particle Immediately after the collision, the particle A moves to the right at 2 m s ⁻¹ and the particle	
then moves towards the particle C .	icie D
(a) Write down the initial speed of the particle A after receiving the impulse.	(1
(b) Find the speed of B after its collision with A .	(3
After the collision with A, the particle B collides directly with the particle C. Immediat that collision, the particle C moves with a speed of 1 m s ⁻¹ .	tely after
(c) Calculate the speed and direction of motion of B after its collision with C .	(4
(d) Does the particle B collide with the particle A again? Justify your answer.	(2

Bronze Questions

Two particles A and B have mass 0.4 kg and 0.3 kg respectively. They are moving in opposite directions on a smooth horizontal table and collide directly. Immediately before the collision, the speed of A is 6 m s⁻¹ and the speed of B is 2 m s⁻¹. As a result of the collision, the direction of motion of B is reversed and its speed immediately after the collision is 3 m s⁻¹. Find

(a)	the speed of A immediately after the collision, stating clearly whether the direction of motion of A is changed by the collision,	
		(4)
(b)	the magnitude of the impulse exerted on B in the collision, stating clearly the units in which your answer is given.	
		(3)
	(Total 7 ma	rks)

A particle P of mass 1.5 kg is moving along a straight horizontal line with speed 3 m s⁻¹. Another particle Q of mass 2.5 kg is moving, in the opposite direction, along the same straight line with speed 4 m s⁻¹. The particles collide. Immediately after the collision the direction of motion of P is reversed and its speed is 2.5 m s⁻¹.

(a)	Calculate the speed of Q immediately after the	ne impact.	(3)
(b)	State whether or not the direction of motion of	of Q is changed by the collision.	(1)
(c)	Calculate the magnitude of the impulse exert answer.	ed by Q on P , giving the units of yo	our (3) (Total 7 marks)

Silver Questions

Two small steel balls A and B have mass 0.6 kg and 0.2 kg respectively. They are moving towards each other in opposite directions on a smooth horizontal table when they collide directly. Immediately before the collision, the speed of A is 8 m s⁻¹ and the speed of B is 2 m s⁻¹. Immediately after the collision, the direction of motion of A is unchanged and the speed of B is twice the speed of A. Find

(a)	the speed of A immediately after the collision,	(5)
(b)	the magnitude of the impulse exerted on \boldsymbol{B} in the collision.	(3) (Total 8 marks)

A particle A of mass 2 kg is moving along a straight horizontal line with speed 12 m s⁻¹. Another particle B of mass m kg is moving along the same straight line, in the opposite direction to A, with speed 8 m s⁻¹. The particles collide. The direction of motion of A is unchanged by the collision. Immediately after the collision, A is moving with speed 3 m s⁻¹ and B is moving with speed 4 m s⁻¹. Find

(a)	the magnitude of the impulse exerted by B on A in the collision,	(2)
(b)	the value of m .	(4) (Total 6 marks)
	-	

Gold Questions

(a) the deceleration of <i>S</i> , (b) the speed of <i>S</i> at <i>C</i> . (c) Show that the mass of <i>S</i> is 0.1 kg. (d) At <i>C</i> , the stone <i>S</i> hits a vertical wall, rebounds from the wall and then slides back along the line <i>CA</i> . The magnitude of the impulse of the wall on <i>S</i> is 2.4 Ns and the stone continues to move against a constant resistance of 0.3 N. (d) Calculate the time between the instant that <i>S</i> rebounds from the wall and the instant that <i>S</i> comes to rest. (6) (Total 13 marks)	= 24 1	ne S is sliding on ice. The stone is moving along a straight horizontal line ABC , where AB m and $AC = 30$ m. The stone is subject to a constant resistance to motion of magnitude 0.3 a A the speed of S is 20 m s ⁻¹ , and at B the speed of S is 16 m s ⁻¹ . Calculate	
(c) Show that the mass of S is 0.1 kg. At C, the stone S hits a vertical wall, rebounds from the wall and then slides back along the line CA. The magnitude of the impulse of the wall on S is 2.4 Ns and the stone continues to move against a constant resistance of 0.3 N. (d) Calculate the time between the instant that S rebounds from the wall and the instant that S comes to rest.	(a)		(2)
At C, the stone S hits a vertical wall, rebounds from the wall and then slides back along the line CA. The magnitude of the impulse of the wall on S is 2.4 Ns and the stone continues to move against a constant resistance of 0.3 N. (d) Calculate the time between the instant that S rebounds from the wall and the instant that S comes to rest.	(b)	1	(3)
 CA. The magnitude of the impulse of the wall on S is 2.4 Ns and the stone continues to move against a constant resistance of 0.3 N. (d) Calculate the time between the instant that S rebounds from the wall and the instant that S comes to rest. (6) 	(c)		(2)
comes to rest.	CA. T	The magnitude of the impulse of the wall on S is 2.4 Ns and the stone continues to move	
	(d)		

A particle P of mass 2 kg is moving with speed u m s⁻¹ in a straight line on a smooth horizontal plane. The particle P collides directly with a particle Q of mass 4 kg which is at rest on the same horizontal plane. Immediately after the collision, P and Q are moving in opposite directions and the speed of P is one-third the speed of Q.

(a)	Show that the speed of P immediately after the collision is $\frac{1}{5}u$ m s ⁻¹ .
	(4
con	er the collision <i>P</i> continues to move in the same straight line and is brought to rest by a stant resistive force of magnitude 10 N. The distance between the point of collision and the
	nt where P comes to rest is 1.6 m.
(b)	Calculate the value of u . (5) (Total 9 marks)

Challenge Question

A tennis ball of mass 0.2 kg is moving with velocity $(-10i)$ m s ⁻¹ when it is struck by	a tennis
racket. Immediately after being struck, the ball has velocity (15 i + 15 j) m s ⁻¹ . Find	
(a) the magnitude of the impulse exerted by the racket on the ball,	(4)
(b) the angle, to the nearest degree, between the vector i and the impulse exerted by the racket,	(2)
(c) the kinetic energy gained by the ball as a result of being struck.	(2) (Total 8 marks)