C4 Vectors Questions 7. Relative to a fixed origin O, the point A has position vector $(2\mathbf{i} - \mathbf{j} + 5\mathbf{k})$, the point B has position vector $(5\mathbf{i} + 2\mathbf{j} + 10\mathbf{k})$, and the point D has position vector $(-\mathbf{i} + \mathbf{j} + 4\mathbf{k})$. The line *l* passes through the points *A* and *B*. (a) Find the vector \overrightarrow{AB} . (2) (b) Find a vector equation for the line *l*. **(2)** (c) Show that the size of the angle BAD is 109° , to the nearest degree. **(4)** The points A, B and D, together with a point C, are the vertices of the parallelogram \overrightarrow{ABCD} , where $\overrightarrow{AB} = \overrightarrow{DC}$. (d) Find the position vector of C. **(2)** (e) Find the area of the parallelogram ABCD, giving your answer to 3 significant figures. **(3)** (f) Find the shortest distance from the point D to the line l, giving your answer to 3 significant figures. **(2)** **6.** With respect to a fixed origin O, the lines l_1 and l_2 are given by the equations $$l_1: \quad \mathbf{r} = \begin{pmatrix} 6 \\ -3 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}, \qquad l_2: \quad \mathbf{r} = \begin{pmatrix} -5 \\ 15 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix},$$ where λ and μ are scalar parameters. (a) Show that l_1 and l_2 meet and find the position vector of their point of intersection A. (b) Find, to the nearest 0.1° , the acute angle between l_1 and l_2 . The point *B* has position vector $\begin{pmatrix} 5 \\ -1 \\ 1 \end{pmatrix}$. (c) Show that B lies on l_1 . (d) Find the shortest distance from B to the line l_2 , giving your answer to 3 significant **(1)** figures. | 4. | Relative to a fixed origin O , the point A has position vector $\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$ and the point position vector $-2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$. The points A and B lie on a straight line l . | | | |----|---|-----|--| | | (a) Find \overrightarrow{AB} . | (2) | | | | (b) Find a vector equation of l. | (2) | | | | The point C has position vector $2\mathbf{i} + p\mathbf{j} - 4\mathbf{k}$ with respect to O, where p is a constant. | | | | | Given that AC is perpendicular to l , find | | | | | (c) the value of p , | (4) | | | | (d) the distance AC . | (2) | | | | | | | 7. The line $$l_1$$ has equation $\mathbf{r} = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, where λ is a scalar parameter. The line $$l_2$$ has equation $\mathbf{r} = \begin{pmatrix} 0 \\ 9 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix}$, where μ is a scalar parameter. Given that l_1 and l_2 meet at the point C, find (a) the coordinates of C. (3) The point A is the point on l_1 where $\lambda = 0$ and the point B is the point on l_2 where $\mu = -1$. (b) Find the size of the angle ACB. Give your answer in degrees to 2 decimal places. (4) (c) Hence, or otherwise, find the area of the triangle ABC. (5) ## 4. The line l_1 has vector equation $$\mathbf{r} = \begin{pmatrix} -6\\4\\-1 \end{pmatrix} + \lambda \begin{pmatrix} 4\\-1\\3 \end{pmatrix}$$ and the line l_2 has vector equation $$\mathbf{r} = \begin{pmatrix} -6\\4\\-1 \end{pmatrix} + \mu \begin{pmatrix} 3\\-4\\1 \end{pmatrix}$$ where λ and μ are parameters. The lines l_1 and l_2 intersect at the point A and the acute angle between l_1 and l_2 is θ . - (a) Write down the coordinates of A. - (b) Find the value of $\cos \theta$. (3) (1) The point X lies on l_1 where $\lambda = 4$. (c) Find the coordinates of X. (1) (d) Find the vector \overline{AX} . (2) (e) Hence, or otherwise, show that $\left| \overrightarrow{AX} \right| = 4\sqrt{26}$. (2) The point Y lies on l_2 . Given that the vector \overline{YX} is perpendicular to l_1 , (f) find the length of AY, giving your answer to 3 significant figures. (3) | 7. | Relative to a fixed origin O , the point A has position vector $(8\mathbf{i} + 13\mathbf{j} - 2\mathbf{k})$, the point B has position vector $(10\mathbf{i} + 14\mathbf{j} - 4\mathbf{k})$, and the point C has position vector $(9\mathbf{i} + 9\mathbf{j} + 6\mathbf{k})$. | |----|---| | | The line l passes through the points A and B . | | | (a) Find a vector equation for the line l. (3) | | | (b) Find $\left \overline{CB} \right $. | | | (2) (c) Find the size of the acute angle between the line segment CB and the line l, giving your | | | answer in degrees to 1 decimal place. (3) | | | (d) Find the shortest distance from the point C to the line l . (3) | | | The point X lies on l . Given that the vector \overrightarrow{CX} is perpendicular to l , | | | (e) find the area of the triangle CXB, giving your answer to 3 significant figures. (3) | | | |