C4 Vectors Questions

7. Relative to a fixed origin O, the point A has position vector $(2\mathbf{i} - \mathbf{j} + 5\mathbf{k})$, the point B has position vector $(5\mathbf{i} + 2\mathbf{j} + 10\mathbf{k})$, and the point D has position vector $(-\mathbf{i} + \mathbf{j} + 4\mathbf{k})$.

The line *l* passes through the points *A* and *B*.

(a) Find the vector \overrightarrow{AB} .

(2)

(b) Find a vector equation for the line *l*.

(2)

(c) Show that the size of the angle BAD is 109° , to the nearest degree.

(4)

The points A, B and D, together with a point C, are the vertices of the parallelogram \overrightarrow{ABCD} , where $\overrightarrow{AB} = \overrightarrow{DC}$.

(d) Find the position vector of C.

(2)

(e) Find the area of the parallelogram ABCD, giving your answer to 3 significant figures.

(3)

(f) Find the shortest distance from the point D to the line l, giving your answer to 3 significant figures.

(2)

6. With respect to a fixed origin O, the lines l_1 and l_2 are given by the equations

$$l_1: \quad \mathbf{r} = \begin{pmatrix} 6 \\ -3 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}, \qquad l_2: \quad \mathbf{r} = \begin{pmatrix} -5 \\ 15 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix},$$

where λ and μ are scalar parameters.

(a) Show that l_1 and l_2 meet and find the position vector of their point of intersection A.

(b) Find, to the nearest 0.1° , the acute angle between l_1 and l_2 .

The point *B* has position vector $\begin{pmatrix} 5 \\ -1 \\ 1 \end{pmatrix}$.

(c) Show that B lies on l_1 .

(d) Find the shortest distance from B to the line l_2 , giving your answer to 3 significant

(1)

figures.

4.	Relative to a fixed origin O , the point A has position vector $\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$ and the point position vector $-2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$. The points A and B lie on a straight line l .		
	(a) Find \overrightarrow{AB} .	(2)	
	(b) Find a vector equation of l.	(2)	
	The point C has position vector $2\mathbf{i} + p\mathbf{j} - 4\mathbf{k}$ with respect to O, where p is a constant.		
	Given that AC is perpendicular to l , find		
	(c) the value of p ,	(4)	
	(d) the distance AC .	(2)	

7. The line
$$l_1$$
 has equation $\mathbf{r} = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, where λ is a scalar parameter.

The line
$$l_2$$
 has equation $\mathbf{r} = \begin{pmatrix} 0 \\ 9 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix}$, where μ is a scalar parameter.

Given that l_1 and l_2 meet at the point C, find

(a) the coordinates of C.

(3)

The point A is the point on l_1 where $\lambda = 0$ and the point B is the point on l_2 where $\mu = -1$.

(b) Find the size of the angle ACB. Give your answer in degrees to 2 decimal places.

(4)

(c) Hence, or otherwise, find the area of the triangle ABC.

(5)

4. The line l_1 has vector equation

$$\mathbf{r} = \begin{pmatrix} -6\\4\\-1 \end{pmatrix} + \lambda \begin{pmatrix} 4\\-1\\3 \end{pmatrix}$$

and the line l_2 has vector equation

$$\mathbf{r} = \begin{pmatrix} -6\\4\\-1 \end{pmatrix} + \mu \begin{pmatrix} 3\\-4\\1 \end{pmatrix}$$

where λ and μ are parameters.

The lines l_1 and l_2 intersect at the point A and the acute angle between l_1 and l_2 is θ .

- (a) Write down the coordinates of A.
- (b) Find the value of $\cos \theta$.

(3)

(1)

The point X lies on l_1 where $\lambda = 4$.

(c) Find the coordinates of X.

(1)

(d) Find the vector \overline{AX} .

(2)

(e) Hence, or otherwise, show that $\left| \overrightarrow{AX} \right| = 4\sqrt{26}$.

(2)

The point Y lies on l_2 . Given that the vector \overline{YX} is perpendicular to l_1 ,

(f) find the length of AY, giving your answer to 3 significant figures.

(3)

7.	Relative to a fixed origin O , the point A has position vector $(8\mathbf{i} + 13\mathbf{j} - 2\mathbf{k})$, the point B has position vector $(10\mathbf{i} + 14\mathbf{j} - 4\mathbf{k})$, and the point C has position vector $(9\mathbf{i} + 9\mathbf{j} + 6\mathbf{k})$.
	The line l passes through the points A and B .
	(a) Find a vector equation for the line l. (3)
	(b) Find $\left \overline{CB} \right $.
	(2) (c) Find the size of the acute angle between the line segment CB and the line l, giving your
	answer in degrees to 1 decimal place. (3)
	(d) Find the shortest distance from the point C to the line l . (3)
	The point X lies on l . Given that the vector \overrightarrow{CX} is perpendicular to l ,
	(e) find the area of the triangle CXB, giving your answer to 3 significant figures. (3)