Surname	Othern	ames
Pearson Edexcel GCE	Centre Number	Candidate Number
A level Further Mat Further Statistics 1		
Practice Paper 2		
Practice Paper 2		

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all the questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 7 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets use this as a guide as to how much time to spend on each question.
- Calculators must not be used for questions marked with a * sign.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

The	cidents occur randomly at a road junction at a rate of 18 every year. The random variable X represents the number of accidents at this road junction in the nationths.	xt
(a)	Write down the distribution of X .	2)
(b)	Find $P(X > 7)$.	2)
(c)	Show that the probability of at least one accident in a randomly selected month is 0.777 (correct to 3 decimal places).	2)
(d)	Find the probability that there is at least one accident in exactly 4 of the next 6 months.	3)
		3)
	(Total 10 mark	(s)
(a)	Define	
	(i) a Type I error,	
	(ii) a Type II error.	2)
Rol	lls of material, manufactured by a machine, contain defects at a mean rate of 6 per roll.	
who	e machine is modified. A single roll is selected at random and a test is carried out to sether or not the mean number of defects per roll has decreased. The significance level sen to be as close as possible to 5%.	
(b)	Calculate the probability of a Type I error for this test.	2)
(c)	Given that the true mean number of defects per roll of material made by the machine is now 4, calculate the probability of a Type II error.	(3)(2)
	(Total 7 mark	s)

(a)	Write down the two conditions needed to approximate the binomial distribution by the Poisson distribution.	
ma	machine which manufactures bolts is known to produce 3% defective bolts. The achine breaks down and a new machine is installed. A random sample of 200 bolts is ken from those produced by the new machine and 12 bolts are defective.	(2)
(b)	Using a suitable approximation, test at the 5% level of significance whether or not the proportion of defective bolts is higher with the new machine than with the old machine. State your hypotheses clearly.	(7)
	(Total 9 ma	ırks)
	n archer shoots at a target until he hits it. The random variable S is the number of shots eded by the archer to hit the target.	<u> </u>
(a)) State a suitable distribution to model S.	(1)
Gi	even that the mean of S is 8 , calculate the probability of the archer	(1)
(b)) hitting the target for the first time on his 5th shot,	(3)
(c)) taking at least 3 shots to hit the target for the first time.	(3)
(d)) State any assumptions you have made in using this model.	(2)
	(Total 9 ma	rks)

5. A total of 100 random samples of 6 items are selected from a production line n a factory and the number of defective items in each sample is recorded. The results are summarised in the table below.

Number of defective items	0	1	2	3	4	5	6
Number of samples	6	16	20	23	17	10	8

(a) Show that the mean number of defective items per sample is 2.91.

(2)

A factory manager suggests that the data can be modelled by a binomial distribution with n = 6. He uses the mean from the sample above and calculates expected frequencies as shown in the table below.

Number of defective items	0	1	2	3	4	5	6
Expected frequency	1.87	10.54	24.82	а	22.01	8.29	b

(b) Calculate the value of a and the value of b, giving your answers to 2 decimal places.

(4)

(c) Test, at the 5% level, whether or not the binomial distribution is a suitable model for the number of defective items in samples of 6 items. State your hypotheses clearly.

(8)

(Total 14 marks)

6. The probability generating function of the random variable X is given by

$$G_x(t) = k(1 + 2t + 2t^2)^2$$
.

(a) Show that $k = \frac{1}{25}$.

(2)

(b) Find P(X = 2).

(2)

(c) Calculate E(X) and Var(X).

(8)

(d) Write down the probability generating function of 2X + 1.

(2)

(Total 14 marks)

7.	The random variable <i>Y</i> is the number of times a biased coin is tossed until 3 heads hat occurred. The variance of <i>Y</i> is 60.	ave
	(a) Find the probability of obtaining a head.	(5)
	(b) Find $P(Y = 8)$.	(2)
	(c) Find $P(Y \le 10 \mid \text{ the first head was gained on the second toss)}$.	(5)
	(Total 1	2 marks)

TOTAL FOR PAPER: 75 MARKS