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KS5 "Full Coverage": Proof By Induction

The Full Coverage worksheets are designed to cover one question of each type seen in past
papers, for each A Level topic.

Question 1
Categorisation: Simple divisibility proofs.

[Edexcel FP1 June 2011 Q%b Edited]

Prove by induction, thatforn € Z™,
f(n) = 71 4 5isdivisible by 12.

(6 marks)

Question 2
Categorisation: Divisibility proofs with two powers.

[Edexcel FP1 June 2014 Q9 Edited]

Prove by induction that, forn € Z7,

is divisible by 6

(6 marks)

Question 3
Categorisation: Divisibility proofs involving more complex powers.

[Edexcel FP1(0Old) June 2017 Q9ii]

Prove by induction that, for ne Z"

f(n) = 3772 + 231 is divisible by 19
(6)
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Question 4
Categorisation: Summation proofs.

[Edexcel FP1(0Old) June 2015 Q6ii]

Prove by induction that, for n € Z*,

L

Z(Zr - 1)3 = %:?(4!11 - l]

r=1

Question 5
Categorisation: Summation proofs involving algebraic fractions.

[Edexcel FP1(Old) June 2016 Q8i]

Prove by induction that, for n € Z°

"

Z 2r+1 11— 1
— F(r+ 1) (n+ 1) 3)

Question 6
Categorisation: Recurrence relations where there is one previous term.

[Edexcel FP1(0Old) June 2016 Q8ii]

A sequence of positive rational numbers 1s defined by
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Question 7
Categorisation: Recurrence relation proofs based on both the previous term and n.

[Edexcel FP1 June 2013 Q%a Edited]
A sequence of numbers is defined by

?.!-1:8
Upil = 4du, —9n, n =1

Prove by inductionthat,forn € Z*, u, = 4" +3n+1
(5 marks)

Question 8
Categorisation: Recurrence relations where there are two previous terms.

[Edexcel FP1(0Old) June 2017 Q9i]

A sequence of numbers is defined by

u =6, U, =27

1

u . ,=b6u n=l1
Prove by induction that, for neZ"
u = 3'(n+1)
(6)
Question 9
Categorisation: Matrix proofs.
[Edexcel FP1(0Old) June 2016 Q6i]
Prove by induction that, for n € Z*,
( 1 0)” 1 0
S 1
_] 5 L, e 5/1 . 1 5/1
Lise )
(6)
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Question 10
Categorisation: Proof by induction using integration by parts

[Edexcel P6 June 2004 Q4]

(a) Prove by induction that

n 1,
—— (6" cosx)=22 e*cos (x+ ;nm, n=1.

(8)

(b) Hence find the Maclaurin series expansion of €* cos x, in ascending powers of x, up
to and including the term in x*.
(3)

Question 11
Categorisation: Inequalities.

Prove 4"~ 1 > n? for n > 3 by mathematical induction. [Source: iitutor]
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Answers

Question 1

f(=7""'+5=7+5=12,

Shows that f(1)=12.

{which is divisible by 12}.
{-.f(n) is divisible by 12 when n=1.}

Assume that for n=1F,
f(k)=7""+5 is divisible by 12 for k € ¢ "

So, f(k +1)=7""""+5

Correct unsimplified expression for
fik +1).

giving, f(k +1)=7*"+5

Sf(k +1]—f{}(j=|{'?l*" +5}_|{?u |+5}

Applies f(k+1) - f(k). No
simplification is necessary and
condone missing brackets.

= U _ 721
= 7% (7% ~1) Attempting to isolate 7°*
=as(7 ) as(m )

< f(k+1) = f(k) + 48(7* '), which is divisible by
12 as both (k) and 48(7* ') are both divisible by

12.(1) If the result is true for » =k, (2) then it is now
true for n=k+1. (3) As the result has shown to be
true for n =1,(4) then the result is true for all n. (5).

All 5 aspects need to be mentioned at some point
for the last Al.
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Correct conclusion with no
incorrect work. Don't condone
missing brackets.

Bl

Bl

M1

M1

Alcso

Al cso



Question 2

f(l)=8'-2"' =6, Shows that f{l) = 6 Bl

Assume that for n =k |
f(k) = 8 — 2" is divisible by 6.

F(k+1) — F(k) =841 — 281 —[gF — 2% Attempt fik + 1) — fi{k) M1

%, /

=8 (8—1)+2¥(1-2)=TxBk —2¢

MI: Attempt fik+ 1) —fik)asa

= 6x BF + 85 2 (=6x8* +£ (k) multiple of 6 MIAL

Al: rhs a correct multiple of 6

F(k+1)=6x8" +2f (k) Completes to f{k + 1) = a multiple of & Al

If the result is true for 7 = &, then it is now true for 1 = k+1. As the result has

been shown to be true for n =1, then the result is true for all 7 (7)) Aleso
Do not award final A if n defined
incorretly e.g. " is an integer” award
AD
Question 3
o]
f(1)=3"+2* =19 {which is divisible by 19}. Shows f(1)=19 | Bl
{ . f(n) is divisible by 19 when n=1}
Assume that for n =k,
flk)=3""7 + 2" is divisible by 19 for k e Z*.
flk+1)= 307 4 a0 Applies £k +1) with at least | power | Ml
correct
flk+1)= 273" ) + 82"
=83 7T+ 2%y 193" ) Either 837 £ 2" or 8f(k); 193" %) | AL
or = 27(3" % 4 2%y —19(2% ) or 273" 4 2%y or 27f (k) - 19(2*) Al
sk +1) =8f(k) + 19[33‘L - Dependent on at least one of the previous | dMI
or £k +1) = 27 (k) — ]9(23,,_|} accuracy marks being awarded.
(o f(k+1) =8 (k) + 193" ) is divisible by 19 as
both 8f(k) and 19(3" ") are both divisible by 19}
If the result is true for n = &, then it is now true for n =k + 1. As the result Correct conclusion | Al
has shown to be true for i = 1.then the result 1s true for all n (e77). seen at the end. | cso
Condone true for n
= | stated earlier.
[6]
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Question 4

Ifn=1, » (2r-1)"=1and %n(ilnz ~1)=1, sotrue forn=1.
r=1
k+1
Assume result true forn =kso » (2r—1)* = %k{zuﬁ D+ 2k +D-1)*
=l

k+l

=>(2r-1) = %(2;; + D) {2k = k) + (3(2k + 1))}

S %(2& +1){(2k* +5k +3)} or %{k +1)(4k* +8k +3) or %((2& + 32k +3k +1)}

|

:E(R+l}{2k+l}{2k+3) = —(k+D)(4k+1) -1)

!
3

True form =&+ 1 if true form = &, ( and true for n = 1) so true by induction for all # eZ’

Question 5

—72=i, so true forn = 1.
(n+1) 4

kel
Assume result true for # = k and consider 2r+l =1 I 2k +1) +1

tfn=1, Y2 3 apg 1o
ori(r+)” 4

e+’ (k+1)Y (k+D)(k+2)
2k +1)+1 (k* +2k +1) ]

(k+2) J_l_[—
hk+D*(k+2)7 ) L(k+D)*(k+2)

- _[(k+1]2(k+2)2_
_1_[&]_1_[;]
R+ k+2)7 ) L(k+141)°

True for n =k + 1 if true for n = k. ( and true for n = 1) so true by induction for all
neZ’

Question 6

- =1y = Sx&y ++ =3 so expression for u, true forn =1

s k
Assume result true for n = k and consider u,,, =+(5x(§) +$)+%

|z

Obtain u,,, = 5x (1) +4+

L =

9

K+l
1 4
5 X(EJ +E and deduce that result is true forn=k+ 1

Bl
M1

M1 Al

dAl

Alcso

©)

Bl
M1

Al
M1

Alcso
(5)

True for n =k + 1 if true for n = k, ( and true for n = 1) so true by induction for all

neZ"
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Question 7

“ =8 given 4" +3(1)+1=8 BI
n=1=u =4 +3(1)+1=8 (- trueforn=1) +3(1)+1=8scen
Assume true for n =k so that u, =4" + 3k +1
. Substitute u, into u,,, as
u,,, =4(4" +3k+1)-9% M1
U, =%, -9
Expression of the form
=4 412k +4-9% =4"" + 3k + 4 ot Al
4" +ak+h
— A L3 k1) 41 Correct completion to an
(k) expression in terms of k + 1 Al
If true for n = k then true for n = k + 1 and as true for | Conclusion with all 4
n =1 true for all n underlined elements that can
be seen anywhere in the Al cso
solution; n defined
incorrectly award AQ.
Question 8
,,=6u_ =% .0zl u=6,u=27 u=3(M+])
n=1; u=32)=6 Check thatw, = 6 and u, =27 | Bl

n=2; u,=3(2+1)=27

So u,1s true when n=1 and n=2.

Then u,_., = 6u,,, — 9,
= 6(3"" )k +2)= 93" Wk +1)

203" Wk +2)= (3" Wk +1)
32k +4-k-=1

= (3)Wk+3)

= (3 YW k+2+1)
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Assume that u, = 3*(k+1) and wu,_, = 3""(k+2) are true.

If the result 1s true for # = k and n = k+1 then 1t 13 now true for n =
k+2. Asitis true for n=1and n = 2 then it is true for all n (e Z7).

Could assume for
n=k,n=k-1 and
show for n=4k +1

Substituting u, and wu,  into

U, = 6w, — 9,

Correct expression

- L. kel
Achieves an expression in 3

(3 Wk +241) or (3*7)k+3)
Correct conclusion seen
at the end. Condone true
forn=1and n =2 seen
anywhere.

This should be
compatible with
assumptions.

MI

Al
MI

Al

Al
€S0
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Question 9

10y 1 0 Bl
Ifn=1, = so true forn =1
-1 5 -i(5'-1 &
Assume result true for n =k
I IVA B B P B
= _ ) or .
-1 5 -1(5'-1n s*)-1 5 -1 5)|-41(5"-1 5t
1oy | 0 1 0
= 1k & £ | Or | gk n MI1 Al
-1 5 -3(5"-D)-5 5x5 -1-5.4(5"-1) 5x%5
| 0 | 0 1 0
il B T ket | OF pe1 S kel | = k4l k41 Al
-——5+—-=-5 5 -1-15"+= 57 -i(5" -1 57
4 4 4
True for n = k + 1 if true for n = &, (and true for # = 1) so true by induction forallne Z". | A leso
Question 10
d x x x -
(a) n=1: E{e c:us.r):e cosx—e sinx (Use of product rule) MI
|
cus[_r + %) = cusxcns% —sin xsin% = E{cmx —sinx) M1
'd' x Iﬁ x T
a{e cns_r}: 27%e"cos _r+z True forn=1  (cs.o. +comment)| Al
Suppose true forn = k.
k+l 1
d—(e’ c-:}s_r) = L 23"&' cus[x+ k_:r] — M1
! dx -
1
= 27| e* cos x+k—ﬂ —e"sin _r+k—ﬁ Al
4 4
! k L)
—27e 2cns(x+—”+£}=21 le“cc{x+{k+l}£} — M1 Al
4 4 4
STrue form=k+ 1, so true (by induction) for all n. (2 1) Al(eso)
1 ). 1 Ir 1
b 1+ \Emsz +—| 2ecos= ¥ +—| 242 cos == |x* + — (4 cos 7 x* M1
®) ( 4} 2[ 2]x 6( v 4]1 pq dcos )
(1) (0) (=2) (-4)
e"cosx=l+x- %13 -~ %x" (or equiv. fractions) A2(1,0)
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(6)

(8)

(3)
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Question 11

Step1l: Showitistrueform =3.
IHs=4*"1=16
RHS=3%*=19
LHS > RH5
Thereforeitistrueforn = 3.
Step?2:- Assume thatitistueforn—k
Thatis, 4 > k2.
Step3: Showitistueforn=Fk+ 1.
Thatis, 4% > (k+1)2.
LHS —4F
s
—451 x4
>k x4 by the assumption 45 > B2
—B1+22+ ¥ 22>2%andFP>1fork>3
>E+2k+1
=({k+1)?
= RHS
LHS > RHS
Thereforeitistrueform = k1 1assumingthatitstrueformn =k
Therefore 4™ ! > n?istrueforn > 3.
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