1.
$$\mathbf{T} = \begin{pmatrix} -1 & 0 & -2 \\ 1 & -1 & -1 \\ -2 & -3 & 1 \end{pmatrix}, \quad \mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 1 & 1 & 4 \end{pmatrix}.$$

(a) Determine the 3×3 matrix **B** for which

$$\mathbf{BT} = \mathbf{A}.$$

(b) Find the 3×3 matrix **C** such that

$$\mathbf{C} = \mathbf{T}\mathbf{A}\mathbf{T}^{-1}.$$

The image of vector $\begin{pmatrix} p \\ q \\ r \end{pmatrix}$ when transformed by **T** is the vector $\begin{pmatrix} 5 \\ -4 \\ -1 \end{pmatrix}$.

(c) Find the values of p, q and r.

(3) (Total 14 marks)

- **2.** Write down the 2×2 matrix that represents
 - (a) an enlargement with centre (0, 0) and scale factor 8,

(1)

(1)

(b) a reflection in the *x*-axis.

Hence, or otherwise,

(c) find the matrix \mathbf{T} that represents an enlargement with centre (0, 0) and scale factor 8, followed by a reflection in the *x*-axis.

$$\mathbf{A} = \begin{pmatrix} 6 & 1 \\ 4 & 2 \end{pmatrix} \text{ and } \mathbf{B} = \begin{pmatrix} k & 1 \\ c & -6 \end{pmatrix}, \text{ where } k \text{ and } c \text{ are constants.}$$
(2)

Jumeirah College

(3)

Given that **AB** represents the same transformation as **T**,

(e) find the value of k and the value of c.

(2) (Total 9 marks)

3.
$$\mathbf{A} = \begin{pmatrix} a & -2 \\ -1 & 4 \end{pmatrix}$$
, where a is a constant.

(a) Find the value of a for which the matrix A is singular.

$$\mathbf{B} = \begin{pmatrix} 3 & -2 \\ -1 & 4 \end{pmatrix} \tag{2}$$

(b) Find \mathbf{B}^{-1} . (3)

The transformation represented by $\bf B$ maps the point P onto the point Q.

Given that Q has coordinates (k-6, 3k+12), where k is a constant,

(c) show that *P* lies on the line with equation y = x + 3.

(3) (Total 8 marks)

4.
$$\mathbf{R} = \begin{pmatrix} a & 2 \\ a & b \end{pmatrix}$$
, where a and b are constants and $a > 0$.

(a) Find \mathbf{R}^2 in terms of a and b.

(3)

2

Jumeirah College

Given that \mathbb{R}^2 represents an enlargement with centre (0, 0) and scale factor 15,

(b) find the value of a and the value of b.

(5) (Total 8 marks)

5.

$$\mathbf{M} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

(a) Describe fully the geometrical transformation represented by the matrix \mathbf{M} .

(2)

The transformation represented by **M** maps the point *A* with coordinates (p, q) onto the point *B* with coordinates $(3\sqrt{2}, 4\sqrt{2})$.

(b) Find the value of p and the value of q.

(4)

(c) Find, in its simplest surd form, the length *OA*, where *O* is the origin.

(2)

(d) Find \mathbf{M}^2 .

(2)

The point *B* is mapped onto the point *C* by the transformation represented by \mathbf{M}^2 .

(e) Find the coordinates of C.

(2)

(Total 12 marks)