(a) Expand and simplify $(7 + \sqrt{5})(3 - \sqrt{5})$. 1. (3) (b) Express $\frac{7+\sqrt{5}}{3+\sqrt{5}}$ in the form $a+b\sqrt{5}$, where a and b are integers. (3) (Total 6 marks) 2. Given that $f(x) = x^2 - 6x + 18, \quad x \ge 0,$ express f(x) in the form $(x-a)^2 + b$, where a and b are integers. (a) (3) The curve C with equation y = f(x), $x \ge 0$, meets the y-axis at P and has a minimum point at Q. (b) Sketch the graph of C, showing the coordinates of P and Q. **(4)** The line y = 41 meets C at the point R. Find the x-coordinate of R, giving your answer in the form $p + q\sqrt{2}$, where p and q are integers. (Total 12 marks) Solve the equation $2^{1-x} = 4^x$. 3. (Total 3 marks) 4. Find the value of $81^{\frac{1}{2}}$, (a) (1) $81^{\frac{3}{4}}$, **(2)**

(c) $81^{-\frac{3}{4}}$. (1) (Total 4 marks)

Jumeirah College 1

- 5. $f(x) = x^2 + 4kx + (3 + 11k)$, where k is a constant.
 - (a) Express f(x) in the form $(x+p)^2+q$, where p and q are constants to be found in terms of k.

(3)

Given that the equation f(x) = 0 has no real roots,

(b) find the set of possible values of k.

(4)

Given that k = 1,

(c) sketch the graph of y = f(x), showing the coordinates of any point at which the graph crosses a coordinate axis.

(3)

(Total 10 marks)

6. The equation $x^2 + 3px + p = 0$, where p is a non-zero constant, has equal roots.

Find the value of *p*.

(Total 4 marks)

7. The equation

$$x^2 + kx + 8 = k$$

has no real solutions for x.

(a) Show that k satisfies $k^2 + 4k - 32 < 0$.

(3)

(b) Hence find the set of possible values of k.

(4)

(Total 7 marks)

8.

$$x^2 + 2x + 3 \equiv (x + a)^2 + b.$$

(a) Find the values of the constants a and b.

(2)

(b) In the space provided below, sketch the graph of $y = x^2 + 2x + 3$, indicating clearly the coordinates of any intersections with the coordinate axes.

(3)

(c) Find the value of the discriminant of $x^2 + 2x + 3$. Explain how the sign of the discriminant relates to your sketch in part (b).

(2)

The equation $x^2 + kx + 3 = 0$, where k is a constant, has no real roots.

(d) Find the set of possible values of k, giving your answer in surd form.

(Total 11 marks)

Jumeirah College