1. (a)
$$\mathbf{T} = \begin{pmatrix} -1 & 0 & -2 \\ 1 & -1 & -1 \\ -2 & -3 & 1 \end{pmatrix}$$
, $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 1 & 1 & 4 \end{pmatrix}$

$$\Delta \mathbf{T} = 1 + 3 + 6 + 4 = 14$$
 B1

Minor matrix of
$$\mathbf{T} = \begin{pmatrix} -4 & -1 & -5 \\ -6 & -5 & 3 \\ -2 & 3 & 1 \end{pmatrix}$$
 M1 A1

Cofactors matrix of
$$\mathbf{T} = \begin{pmatrix} -4 & 1 & -5 \\ 6 & -5 & -3 \\ -2 & -3 & 1 \end{pmatrix}$$
 A1 ft

Adjoint of
$$\mathbf{T} = \begin{pmatrix} -4 & 6 & -2 \\ 1 & -5 & -3 \\ -5 & -3 & 1 \end{pmatrix}$$
 A1 ft

$$\mathbf{T}^{-1} = \begin{array}{ccc} \frac{1}{14} \begin{pmatrix} -4 & 6 & -2\\ 1 & -5 & -3\\ -5 & -3 & 1 \end{pmatrix}$$
 A1 ft

$$\mathbf{BT} = \mathbf{A} \Rightarrow \mathbf{BTT}^{-1} = \mathbf{AT}^{-1} \Rightarrow \mathbf{B} = \mathbf{AT}^{-1}$$
 M1

$$\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 1 & 1 & 4 \end{pmatrix} \mathbf{T}^{-1} = \frac{1}{14} \begin{pmatrix} -4 & 6 & -2 \\ -3 & -13 & -5 \\ -23 & -11 & -1 \end{pmatrix}$$
 A1 8

(b)
$$\mathbf{C} = \mathbf{TAT}^{-1} = \mathbf{TB}$$
 M1
$$= \frac{1}{14} \begin{pmatrix} 50 & 16 & 4 \\ 22 & 30 & 8 \\ -6 & 16 & 18 \end{pmatrix} \mathbf{1}$$
 M1 A1 3

(c)
$$\mathbf{T} \begin{pmatrix} p \\ q \\ r \end{pmatrix} = \begin{pmatrix} 5 \\ -4 \\ -1 \end{pmatrix}$$

$$\mathbf{T}^{-1}\mathbf{T} \begin{pmatrix} p \\ q \\ r \end{pmatrix} = \mathbf{T}^{-1} \begin{pmatrix} 5 \\ -4 \\ -1 \end{pmatrix}$$
 M1

$$\begin{pmatrix} p \\ q \\ r \end{pmatrix} = \frac{1}{14} \begin{pmatrix} -4 & 6 & -2 \\ 1 & -5 & -3 \\ -5 & -3 & 1 \end{pmatrix} \begin{pmatrix} 5 \\ -4 \\ -1 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \\ -1 \end{pmatrix}$$
 M1

p = -3, q = 2, r = -1 A1 3

2. (a)
$$\begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix}$$
 B1 1

(b)
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 B1 1

(c)
$$T = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & -8 \end{pmatrix}$$
 M1 A1 2

Note

M1: Accept multiplication of their matrices either way round (this can be implied by correct answer)

A1: cao

(d)
$$AB = \begin{pmatrix} 6 & 1 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} k & 1 \\ c & -6 \end{pmatrix} = \begin{pmatrix} 6k + c & 0 \\ 4k + 2c & -8 \end{pmatrix}$$
 M1 A1 A1 3

Note

M1: Correct matrix multiplication method implied by one or two correct terms in correct positions.

A1: for three correct terms in correct positions

2nd A1: for all four terms correct and simplified

[14]

(e) "
$$6k+c=8$$
" and " $4k+2c=0$ " Form equations and solve simultaneously M1 $k=2$ and $c=-4$ A1 2

Alternative method

M1: $AB = T \implies B = A^{-1}T =$ and compare elements to find k and c. Then A1 as before.

Note

M1: follows their previous work but must give two equations from which k and c can be found and there must be attempt at solution getting to k =or c =.

A1: is cao (but not cso – may follow error in position of 4k + 2c earlier).

[9]

3. (a) Use
$$4a - (-2 \times -1) = 0$$
 \Rightarrow $a, = \frac{1}{2}$ M1, A1 2

Note

Allow sign slips for first M1

(b) Determinant:
$$(3 \times 4) - (-2 \times -1) = 10$$
 (Δ) M1 $\mathbf{B}^{-1} = \frac{1}{10} \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}$ M1 A1cso 3

Note

Allow sign slip for determinant for first M1 (This mark may be awarded for 1/10 appearing in inverse matrix.)

Second M1 is for correctly treating the 2 by 2 matrix, ie for $\begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}$

Watch out for determinant (3 + 4) - (-1 + -2) = 10 - M0 then final answer is A0

(c)
$$\frac{1}{10} \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} k-6 \\ 3k+12 \end{pmatrix}$$
, = $\frac{1}{10} \begin{pmatrix} 4(k-6)+2(3k+12) \\ (k-6)+3(3k+12) \end{pmatrix}$

M1, A1ft

$$\binom{k}{k+3} \text{ Lies on } y = x+3$$

A1 3

Alternative:

$$\begin{pmatrix} 3 & -2 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} x \\ x+3 \end{pmatrix}, = \begin{pmatrix} 3x-2(x+3) \\ -x+4(x+3) \end{pmatrix},$$

M1, A1,

$$\binom{x-6}{3x+12}$$
, which was of the form $(k-6, 3k+12)$

A1

$$\operatorname{Or}\begin{pmatrix} 3 & -2 \\ -1 & 4 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}$$
, = $\begin{pmatrix} 3x-2y \\ -x+4y \end{pmatrix} = \begin{pmatrix} k-6 \\ 3k+12 \end{pmatrix}$, and solves

M1

simultaneous equations

Both equations correct and eliminate one letter to get x = k or y = k + 3 or 10x - 10y = -30 or equivalent.

A1

Completely correct work (to x = k and y = k + 3), and conclusion lies on y = x + 3

A1

Note

M1 for multiplying matrix by appropriate column vector

A1 correct work (ft wrong determinant)

A1 for conclusion

[8]

4. (a)
$$\mathbf{R}^2 = \begin{cases} a^2 + 2a & 2a + 2b \\ a^2 + ab & 2a + b^2 \end{cases}$$

M1 A1 A1 3

Note

1 term correct: M1 A0 A0

2 or 3 terms correct: M1 A1 A0

(b) Puts their
$$a^2 + 2a = 15$$
 or their $2a + b^2 = 15$ M1, or their $(a^2 + 2a)(2a + b^2) - (a^2 + ab)(2a + 2b) = 225$ (or to 15), Puts their $a^2 + ab = 0$ or their $2a + 2b = 0$ M1

Solve to find either a or b M1

a = 3, b = -3 A1, A1 5

Alternative for (b)

Uses ${f R}^2 \times$ column vector = 15 \times column vector, and equates rows to M1, M1 give two equations in a and b only

Solves to find either a or b as above method

M1 A1 A1

Note

M1 M1 as described in scheme (In the alternative scheme column vector can be general or specific for first M1 but must be specific for 2^{nd} M1) M1 requires solving equations to find a and/or b (though checking that correct answer satisfies the equations will earn this mark) This mark can be given independently of the first two method marks.

So solving $\mathbf{M}^2 = 15\mathbf{M}$ for example gives M0M0M1A0A0 in part (b) Also putting leading diagonal = 0 and other diagonal = 15 is M0M0M1A0A0 (No possible solutions as a > 0)

A1 A1 for correct answers only

Any Extra answers given, e.g. a = -5 and b = 5 or wrong answers – deduct last A1 awarded

So the two sets of answers would be A1 A0 Just the answer . a = -5 and b = 5 is A0 A0

Stopping at two values for a or for b – no attempt at other is A0A0

Answer with no working at all is 0 marks

[8]

5. (a)
$$45^{\circ}$$
 or $\frac{\pi}{4}$ rotation (anticlockwise), about the origin B1, B1

Note

More than one transformation 0/2

(b)
$$\begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} 3\sqrt{2} \\ 4\sqrt{2} \end{pmatrix}$$
 M1
$$p - q = 6 \text{ and } p + q = 8 \text{ or equivalent}$$
 M1A1
$$p = 7 \text{ and } q = 1 \text{ both correct}$$
 A1 4

Note

Second M1 for correct matrix multiplication to give two equations

Alternative

$$\mathbf{M}^{-1} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \text{ First M1A1}$$

$$\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 3\sqrt{2} \\ 4\sqrt{2} \end{pmatrix} = \begin{pmatrix} 7 \\ 1 \end{pmatrix} \text{ Second M1 A1}$$

(c) Length of *OA* (= length of *OB*) =
$$\sqrt{7^2 + 1^2}$$
, = $\sqrt{50} = 5\sqrt{2}$ M1, A1 2

Note

Correct use of their p and their q award M1

(d)
$$M^2 = \begin{pmatrix} \frac{1}{\sqrt{2}} & = \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & = \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 M1A1 2

(e)
$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 3\sqrt{2} \\ 4\sqrt{2} \end{pmatrix}$$
 so coordinates are $(-4\sqrt{2}, 3\sqrt{2})$ M1A1 2

Note

Accept column vector for final A1.

Order of matrix multiplication needs to be correct to award Ms

[12]