FP1 - Matrix Algebra Questions

4.	anticlockwise about the origin. U , represented by the 2×2 matrix P, is a rotation through	90°
	(a) Write down the matrix P .	(1)
	The transformation V , represented by the 2×2 matrix \mathbf{Q} , is a reflection in the $y = -x$.	line
	(b) Write down the matrix \mathbf{Q} .	(1)
	Given that U followed by V is transformation T , which is represented by the matrix \mathbf{F}	ł,
	(c) express R in terms of P and Q,	(1)
	(d) find the matrix R,	(2)
	(e) give a full geometrical description of T as a single transformation.	(2)

6.
$$\mathbf{X} = \begin{pmatrix} 1 & a \\ 3 & 2 \end{pmatrix}$$
, where a is a constant.

(a) Find the value of a for which the matrix X is singular.

$$\mathbf{Y} = \begin{pmatrix} 1 & -1 \\ 3 & 2 \end{pmatrix}$$

(b) Find \mathbf{Y}^{-1} .

(2)

The transformation represented by Y maps the point A onto the point B.

Given that *B* has coordinates $(1 - \lambda, 7\lambda - 2)$, where λ is a constant,

(c) find, in terms of λ , the coordinates of point A.

2. (a) Given that

$$\mathbf{A} = \begin{pmatrix} 3 & 1 & 3 \\ 4 & 5 & 5 \end{pmatrix} \quad \text{and} \quad \mathbf{B} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 0 & -1 \end{pmatrix}$$

find AB.

(2)

(b) Given that

$$C = \begin{pmatrix} 3 & 2 \\ 8 & 6 \end{pmatrix}$$
, $D = \begin{pmatrix} 5 & 2k \\ 4 & k \end{pmatrix}$, where k is a constant

and

$$\mathbf{E} = \mathbf{C} + \mathbf{D}$$

find the value of k for which E has no inverse.

$$\mathbf{M} = \begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix}$$

(a) Find det M.

(1)

The transformation represented by M maps the point S(2a-7, a-1), where a is a constant, onto the point S'(25, -14).

(b) Find the value of a.

(3)

The point R has coordinates (6, 0).

Given that O is the origin,

(c) find the area of triangle ORS.

(2)

Triangle ORS is mapped onto triangle OR'S' by the transformation represented by M.

(d) Find the area of triangle OR'S'.

(2)

Given that

$$\mathbf{A} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

(e) describe fully the single geometrical transformation represented by A.

(2)

The transformation represented by A followed by the transformation represented by B is equivalent to the transformation represented by M.

(f) Find B.

- **4.** A right angled triangle *T* has vertices A(1, 1), B(2, 1) and C(2, 4). When *T* is transformed by the matrix $\mathbf{P} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, the image is T'.
 - (a) Find the coordinates of the vertices of T'. (2)
 - (b) Describe fully the transformation represented by P.
 (2)

The matrices $\mathbf{Q} = \begin{pmatrix} 4 & -2 \\ 3 & -1 \end{pmatrix}$ and $\mathbf{R} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ represent two transformations. When T is transformed by the matrix $\mathbf{Q}\mathbf{R}$, the image is T''.

- (c) Find QR. (2)
- (d) Find the determinant of QR. (2)
- (e) Using your answer to part (d), find the area of T''. (3)

3. (a) Given that

$$\mathbf{A} = \begin{pmatrix} 1 & \sqrt{2} \\ \sqrt{2} & -1 \end{pmatrix}$$

- (i) find A^2 ,
- (ii) describe fully the geometrical transformation represented by A^2 .

(4)

(b) Given that

$$\mathbf{B} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

describe fully the geometrical transformation represented by B.

(2)

(c) Given that

$$\mathbf{C} = \begin{pmatrix} k+1 & 12 \\ k & 9 \end{pmatrix}$$

where k is a constant, find the value of k for which the matrix C is singular.

(3)

5.
$$\mathbf{A} = \begin{pmatrix} -4 & a \\ b & -2 \end{pmatrix}$$
, where a and b are constants.

Given that the matrix **A** maps the point with coordinates (4, 6) onto the point with coordinates (2, -8),

(a) find the value of a and the value of b.

(4)

A quadrilateral R has area 30 square units. It is transformed into another quadrilateral S by the matrix A. Using your values of a and b,

(b) find the area of quadrilateral S.