Edexcel AS Maths Exponentials and logarithms

Topic assessment

1. Write as a single logarithm:

(i)
$$2\log a + 3\log b$$

(ii)
$$\log x - 3\log y + 4\log z$$

2. Express the following in terms of $\log p$, $\log q$ and $\log r$.

(i)
$$\log \frac{pq}{r}$$

(ii)
$$\log \frac{\sqrt{p}}{r^2}$$

3. Solve the following equations;

(i)
$$2^x = 7$$

(ii)
$$3^{2x} = 5$$

4. Solve the equations

(i)
$$2e^x = 3e^{-x} + 5$$

(ii)
$$ln(2x+1) = ln x + 2$$

$$\ln(2x+1) = \ln x + 2$$
 [3]

giving your answers in exact form.

5. Alice puts £500 in a savings account, at a fixed interest rate of 5% per year, when her grandson Harry is born. Interest is added to the account on Harry's birthday each year. The amount, P, in the account after n years is given by:

$$P = 500 \times 1.05^n$$

How old will Harry be when the amount in the savings account first exceeds £1000? [4]

- 6. The number N of rabbits in a colony after t years is modelled by $N = 20 \times 2^{0.8t}$.
 - How many rabbits are in the colony after 5 years?

[2]

- (ii) A biologist suggests that due to limited resources, this model will no longer be appropriate when N reaches 2000. For how many years will this model be appropriate?
- 7. The temperature $T^{\circ}C$ of the water in a kettle t minutes after boiling is modelled by the equation $T = 20 + 80e^{-0.5t}$.
 - (i) What is the initial temperature of the water?

[1]

(ii) Find the temperature of the water after 5 minutes.

- [2]
- (iii) Find the time at which the temperature of the water is 30°C.
- [3]
- (iv) Find the initial rate of cooling, and the rate of cooling after 2 minutes. [3]
- (v) What will be the long-term temperature of the water?

[1]

8. In an experiment, the number of bacteria, N, in a culture was estimated at time t days after the measurements started.

The results were as follows:

t	1	2	3	4	5	6
N	120	170	250	400	620	910

Edexcel AS Maths Exponentials and logs Assessment

It is believed that the relationship between N and t can be expressed in the form

$$N = ab^t$$

where a and b are constants.

- (i) Explain how this can be tested by plotting $\log N$ against t. [2]
- (ii) Make out a table of values of $\log N$ and draw the graph. [3]
- (iii) Use your graph to estimate the values of a and b. [3]
- (iv) Estimate the number of bacteria present after 20 days. State, with a reason, whether your estimate is likely to be a good one. [2]
- 9. It is believed that two quantities, x and y, are connected by a relationship of the form $y = kx^n$, where k and n are constants.

In an experiment, the following data were produced.

х	5	10	15	20	25	30	35
у	9	24	48	69	102	131	166

- (i) Explain how the form of the relationship can be tested by plotting $\log y$ against $\log x$. [2]
- (ii) Make out a table of values of $\log x$ and $\log y$ and plot the graph. [3]
- (iii) Use your graph to estimate the values of k and n. [3]

Total 55 marks