FP1 - proof by mathematical induction Questions ANSWERS (73 marks)

8.	(a) If $n = 1$, $\sum_{r=1}^{n} r(r+3) = 1 \times 4 = 4$ and $\frac{1}{3}n(n+1)(n+5) = \frac{1}{3} \times 1 \times 2 \times 6 = 4$,	B1
	(so true for $n = 1$. Assume true for $n = k$) So $\sum_{k=1}^{k+1} r(r+3) = \frac{1}{3}k(k+1)(k+5) + (k+1)(k+4)$	M1
	$= \frac{1}{3}(k+1)[k(k+5)+3(k+4)] = \frac{1}{3}(k+1)[k^2+8k+12]$	A1
	$= \frac{1}{3}(k+1)(k+2)(k+6)$ which implies is true for $n = k+1$	dA1
	As result is true for $n = 1$ this implies true for all positive integers and so result is true by induction	dM1A1cso
		(6)
	(b) $u_1 = 1^2(1-1) + 1 = 1$	B1
	(so true for $n = 1$. Assume true for $n = k$)	
	$u_{k+1} = k^{2}(k-1) + 1 + k(3k+1)$	M1,
	$= k(k^2 - k + 3k + 1) + 1 = k(k + 1)^2 + 1$ which implies is true for $n = k + 1$	A1
	As result is true for $n = 1$ this implies true for all positive integers and so result is true by induction	M1A1cso (5)
		[11]
Notes	(a) First B for LHS=4 and RHS =4	
	First M for attempt to use $\sum_{1}^{k} r(r+3) + u_{k+1}$	
	First A for $\frac{1}{3}(k+1)$, $\frac{1}{3}(k+2)$ or $\frac{1}{3}(k+6)$ as a factor before the final line	
	Second A dependent on first for $\frac{1}{3}(k+1)(k+2)(k+6)$ with no errors seen	
	Second M dependent on first M and for any 3 of 'true for $n=1$ ' 'assume true for $n=k$ ' 'true for $n=k+1$ ', 'true for all n ' (or 'true for all positive integers') seen anywhere	
	Third A for correct solution only with all statements and no errors	

June 2012

10.	$f(n) = 2^{2n-1} + 3^{2n-1}$ is divisible by 5.		
	$f(1) = 2^1 + 3^1 = 5,$	Shows that $f(1) = 5$.	B1
	Assume that for $n = k$, $f(k) = 2^{2k-1} + 3^{2k-1}$ is divisible by 5 for $k \in c^+$.		
	$f(k+1) - f(k) = 2^{2(k+1)-1} + 3^{2(k+1)-1} - (2^{2k-1} + 3^{2k-1})$	M1: Attempts $f(k+1) - f(k)$. A1: Correct expression for $\underline{f(k+1)}$ (Can be unsimplified)	M1A1
	$= 2^{2k+1} + 3^{2k+1} - 2^{2k-1} - 3^{2k-1}$	(can be dishiphined)	
	$=2^{2k-1+2}+3^{2k-1+2}-2^{2k-1}-3^{2k-1}$		
	$=4(2^{2k-1})+9(3^{2k-1})-2^{2k-1}-3^{2k-1}$	Achieves an expression in 2^{2k-1} and 3^{2k-1}	M1
	$=3(2^{2k-1})+8(3^{2k-1})$		
	$=3(2^{2k-1})+3(3^{2k-1})+5(3^{2k-1})$		
	$=3f(k)+5(3^{2k-1})$		
	$f(k+1) = 4f(k) + 5(3^{2k-1}) \text{ or}$ $4(2^{2k-1} + 3^{2k-1}) + 5(3^{2k-1})$	Where $f(k + 1)$ is correct and is clearly a multiple of 5.	A1
	If the result is true for $n = k$, then it is now true for $n = k+1$. As the result has shown to be true for $n = 1$, then the result is true for all n .	Correct conclusion at the end, at least as given, and all previous marks scored.	A1 cso
			[(
			6 mark
	All methods should complete to $f(k + 1) =$ where $f(k + 1) =$ where $f(k + 1) =$ where $f(k + 1) =$	to be available.	
	Note that there are many different ways of pro	oving this result by induction.	

	1			
6(a)	$n = 1$, LHS = $1^3 = 1$, RHS = $\frac{1}{4} \times 1^2 \times 2^2 = 1$	Shows both LHS	= 1 and RHS = 1	B1
	Assume true for n = k			
	When $n = k + 1$			
	$\sum_{r=1}^{k+1} r^3 = \frac{1}{4}k^2(k+1)^2 + (k+1)^3$	Adds $(k+1)^3$ to t	he given result	M1
	1	Attempt to factor	ise out $\frac{1}{4}(k+1)^2$	dM1
	$= \frac{1}{4}(k+1)^2[k^2+4(k+1)]$	Correct expression $\frac{1}{4}(k+1)^2$ factoris		A1
	$= \frac{1}{4}(k+1)^2(k+2)^2$ Must see 4 things: <u>true for n = 1</u> , <u>assumption true for n = k</u> , <u>said true for n = k + 1</u> and therefore <u>true for all n</u>		roof with no errors and previous marks must	Alcso
	See extra notes for a	alternative approa	ıches	(5)
(b)	$\sum (r^3 - 2) = \sum r^3 - \sum 2$	Attempt two sum	s	M1
	$\sum r^3 - \sum 2n \text{ is M0}$			
	$= \frac{1}{4}n^2(n+1)^2 - 2n$	Correct expressio	n	A1
	$= \frac{n}{4}(n^3 + 2n^2 + n - 8) *$	Completion to pri errors seen.	inted answer with no	A1
				(3)
(c)	$\sum_{r=20}^{r=50} (r^3 - 2) = \frac{50}{4} \times 130042 - \frac{19}{4} \times 7592$	least once.	correct expression at	M1
	(=1625525-36062)	Correct numerica (unsimplified)	l expression	A1
	= 1 589 463	cao		A1
		•		(3)
(c) Way 2	$\sum_{r=20}^{r=50} (r^3 - 2) = \sum_{r=20}^{r=50} r^3 - \sum_{r=20}^{r=50} (2) = \frac{50^2}{4} \times 51^2 - \frac{1}{12}$	$-\frac{19^2}{4} \times 20^2 - 2 \times 31$	M1 for (S ₅₀ - S ₂₀ or S ₅₀ - S ₁₉ for cubes) - (2x30 or 2x31) A1 correct numerical expression	Total 11
	=1 589 463		A1	

7(a)	$u_2 = 3, \ u_3 = 7$		B1, B1	
				(2)
(b)	At $n = 1$, $u_1 = 2^1 - 1 = 1$ and so result true for $n = 1$		B1	
	Assume true for $n = k$; $u_k = 2^k - 1$			
	and so $u_{k+1} (= 2u_k + 1) = 2(2^k - 1) + 1$	Substitutes u_k into u_{k+1} (must see this line)	M1	
	and so $u_{k+1} (= 2u_k + 1) = 2(2 - 1) + 1$	Correct expression	A1	
	$u_{k+1} (= 2^{k+1} - 2 + 1) = 2^{k+1} - 1$	Correct completion to $u_{k+1} = 2^{k+1} - 1$	A1	
	Must see 4 things: $\underline{\text{true for } n = 1}$, $\underline{\text{assumption true for } n = k}$, $\underline{\text{said true for } n = k + 1}$ and therefore $\underline{\text{true for all } n}$	Fully complete proof with no errors and comment. All the previous marks in (b) must have been scored.	Alcso	
	Ignore any subsequent attempts e.g. u_k	$u_{k+2} = 2u_{k+1} + 1 = 2(2^{k+1} - 1) + 1$ etc.		(5)
			Tota	al 7

June 2011

$n=1$; LHS = $\begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^1 = \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$		
RHS = $\begin{pmatrix} 3^1 & 0 \\ 3(3^1 - 1) & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$		
As LHS = RHS, the matrix result is true for $n = 1$.	Check to see that the result is true for $n = 1$.	В1
Assume that the matrix equation is true for $n = k$, i.e. $\begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^k = \begin{pmatrix} 3^k & 0 \\ 3(3^k - 1) & 1 \end{pmatrix}$		
With $n = k+1$ the matrix equation becomes $\begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^{k+1} = \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^{k} \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$		
$= \begin{pmatrix} 3^k & 0 \\ 3(3^k - 1) & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix} \text{or} \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix} \begin{pmatrix} 3^k & 0 \\ 3(3^k - 1) & 1 \end{pmatrix}$	$\begin{pmatrix} 3^k & 0 \\ 3(3^k - 1) & 1 \end{pmatrix} \text{by} \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$	M1
$= \begin{pmatrix} 3^{k+1} + 0 & 0 + 0 \\ 9(3^k - 1) + 6 & 0 + 1 \end{pmatrix} \text{or} \begin{pmatrix} 3^{k+1} + 0 & 0 + 0 \\ 6.3^k + 3(3^k - 1) & 0 + 1 \end{pmatrix}$	Correct unsimplified matrix with no errors seen.	A1
$= \begin{pmatrix} 3^{k+1} & 0 \\ 9(3^k) - 3 & 1 \end{pmatrix}$		
$= \begin{pmatrix} 3^{k+1} & 0 \\ 3(3(3^k) - 1) & 1 \end{pmatrix}$		
$= \begin{pmatrix} 3^{k+1} & 0 \\ 3(3^{k+1} - 1) & 1 \end{pmatrix}$	Manipulates so that $k \rightarrow k+1$ on at least one term. Correct result with no errors seen with some working between this and the previous A1	dM1
If the result is true for $n = k$ (1) then it is now true for $n = k+1$. (2) As the result has shown to be true for $n = 1$, (3) then the result is true for all n . (4) All 4	Correct conclusion with all previous marks earned	A1
aspects need to be mentioned at some point for the last A1.		

$f(1) = 7^{2-1} + 5 = 7 + 5 = 12,$	Shows that $f(1) = 12$.	B1
{which is divisible by 12}.		
$\{ :: f(n) \text{ is divisible by } 12 \text{ when } n = 1. \}$		
Assume that for $n = k$,		
$f(k) = 7^{2k-1} + 5$ is divisible by 12 for $k \in e^+$.		
20.5	Correct unsimplified expression for	<u> </u>
So, $f(k+1) = 7^{2(k+1)-1} + 5$	f(k+1).	B1
giving, $f(k+1) = 7^{2k+1} + 5$		
$f(k+1) - f(k) = (7^{2k+1} + 5) - (7^{2k-1} + 5)$	Applies $f(k+1) - f(k)$. No	241
(1 + 1) - 1(k) = (7 + 3) - (7 + 3)	simplification is necessary and condone missing brackets.	M1
	condone missing orackets.	
$=7^{2k+1}-7^{2k-1}$		
$=7^{2k-1}(7^2-1)$	Attempting to isolate 7 ^{2k-1}	M1
$=48(7^{2k-1})$	48(7 ^{2k-1})	A1cso
· /	,	
$\therefore f(k+1) = f(k) + 48(7^{2k-1}), \text{ which is divisible by}$		
12 as both $f(k)$ and $48(7^{2k-1})$ are both divisible by		
, ,	Correct conclusion with no	
12.(1) If the result is true for $n = k$, (2) then it is now	incorrect work. Don't condone	A1 cso
true for $n = k+1$. (3) As the result has shown to be	missing brackets.	
true for $n = 1,(4)$ then the result is true for all n . (5).		
All 5 aspects need to be mentioned at some point for the last A1.		
AVA THE MIST TALL	1	(6)
There are other ways of proving this by induction. See appendix for 3 alternatives.		
If you are in any doubt consult your team leader and/or use the review system.		
		12

Jan	2011		
9.	$u_{n+1} = 4u_n + 2$, $u_1 = 2$ and $u_n = \frac{2}{3}(4^n - 1)$		
	$n=1; u_1 = \frac{2}{3}(4^1 - 1) = \frac{2}{3}(3) = 2$	Check that $u_n = \frac{2}{3}(4^n - 1)$	B1
	So u_n is true when $n = 1$.	yields 2 when $\underline{n=1}$.	, D1
	Assume that for $n = k$ that, $u_k = \frac{2}{3}(4^k - 1)$ is true for $k \in \mathbb{Z}^+$.		
	Then $u_{k+1} = 4u_k + 2$		
	$=4\left(\frac{2}{3}(4^{k}-1)\right)+2$	Substituting $u_k = \frac{2}{3}(4^k - 1)$ into $u_{n+1} = 4u_n + 2.$	M1
	$= \frac{8}{3} \left(4\right)^k - \frac{8}{3} + 2$	An attempt to multiply out the brackets by 4 or $\frac{8}{3}$	M1
	$=\frac{2}{3}(4)(4)^k-\frac{2}{3}$		
	$= \frac{2}{3} 4^{k+1} - \frac{2}{3}$		
	$= \frac{2}{3} \left(4^{k+1} - 1 \right)$	$\frac{2}{3}(4^{k+1}-1)$	A1
	Therefore, the general statement, $u_n = \frac{2}{3}(4^n - 1)$ is true when $n = k + 1$. (As u_n is true for $n = 1$,) then u_n is true for all positive integers by mathematical induction	Require 'True when n=1', 'Assume true when $n=k$ ' and 'True when $n=k+1$ ' then true for all n o.e.	A1

June 2010

(a) LHS = $f(k+1) = 2^{k+1} + 6^{k+1}$	OR RHS =	M1	
	$= 6f(k) - 4(2^k) = 6(2^k + 6^k) - 4(2^k)$		
$=2(2^k)+6(6^k)$	$=2(2^k)+6(6^k)$	A1	
$= 6(2^k + 6^k) - 4(2^k) = 6f(k) - 4(2^k)$	$= 2^{k+1} + 6^{k+1} = f(k+1) $ (*)	A1	
			(3)
OR $f(k+1) - 6f(k) = 2^{k+1} + 6^{k+1} - 6(2^k + 6^k)$)	M1	
$=(2-6)(2^k)=-4.2^k$, and so $f(k+1)$	$= 6f(k) - 4(2^k)$	A1,	A1
			(3)
(b) $n = 1$: $f(1) = 2^1 + 6^1 = 8$, which is divis	ible by 8	B1	
Either Assume f(k) divisible by 8 and try	Or Assume $f(k)$ divisible by 8 and try to	M1	
to use $f(k+1) = 6f(k) - 4(2^k)$	use $f(k+1)-f(k)$ or $f(k+1)+f(k)$		
	including factorising $6^k = 2^k 3^k$		
Show $4(2^k) = 4 \times 2(2^{k-1}) = 8(2^{k-1})$ or $8(\frac{1}{2}2^k)$	$=2^{3}2^{k-3}(1+5.3^{k})$ or	A1	
Or valid statement	$=2^{3}2^{k-3}(3+7.3^{k})$ o.e.	[
Deduction that result is implied for	Deduction that result is implied for	A1cso	
n = k + 1 and so is true for positive integers	n = k + 1 and so is true for positive integers	1	(4)
by induction (may include $n = 1$ true here)	by induction (must include explanation of why $n = 2$ is also true here)	7 m	narks
Notes	•		

Notes

(a) M1: for substitution into LHS (or RHS) or f(k+1)-6f(k)

A1: for correct split of the two separate powers cao

A1: for completion of proof with no error or ambiguity (needs (for example) to start with one side of equation and reach the other or show that each side separately is $2(2^k) + 6(6^k)$ and conclude LHS = RHS)

(b) B1: for substitution of n = 1 and stating "true for n = 1" or "divisible by 8" or tick. (This statement may appear in the concluding statement of the proof)

M1: Assume f(k) divisible by 8 and consider $f(k+1) = 6f(k) - 4(2^k)$ or equivalent expression that could lead to proof – not merely f(k+1) - f(k) unless deduce that 2 is a factor of 6 (see right hand scheme above).

A1: Indicates each term divisible by 8 OR takes out factor 8 or 23

A1: Induction statement . Statement n = 1 here could contribute to B1 mark earlier.

NB: $f(k+1) - f(k) = 2^{k+1} - 2^k + 6^{k+1} - 6^k = 2^k + 5.6^k$ only is M0 A0 A0

(b) "Otherwise" methods

Could use: $f(k+1) = 2f(k) + 4(6^k)$ or $f(k+2) = 36f(k) - 32(6^k)$ or $f(k+2) = 4f(k) + 32(2^k)$ in a similar way to given expression and Left hand mark scheme is applied.

Special Case: Otherwise Proof not involving induction: This can only be awarded the B1 for checking n = 1.

0 0110	2010	
9.	(a) If $n=1$, $\sum_{r=1}^{n} r^2 = 1$ and $\frac{1}{6} n(n+1)(2n+1) = \frac{1}{6} \times 1 \times 2 \times 3 = 1$, so true for $n=1$.	B1
	Assume result true for $n = k$	M1
	h-1 •	
	$\sum_{k=1}^{k+1} r^2 = \frac{1}{6} k(k+1)(2k+1) + (k+1)^2$	
	$\frac{2}{6}$ $\frac{1}{6}$ $\frac{1}$	M1
	$= \frac{1}{6}(k+1)(2k^2+7k+6) \text{ or } = \frac{1}{6}(k+2)(2k^2+5k+3) \text{ or } = \frac{1}{6}(2k+3)(k^2+3k+2)$	A1
	$= \frac{1}{6}(k+1)(k+2)(2k+3) = \frac{1}{6}(k+1)(\{k+1\}+1)(2\{k+1\}+1) \text{ or equivalent}$	dM1
	True for $n = k + 1$ if true for $n = k$, (and true for $n = 1$) so true by induction for all n .	A1cso
	in the let it is a late to the in the let in	(6)
	Alternative for (a) After first three marks B M M1 as earlier:	B1M1M1
		dM1
	May state RHS = $\frac{1}{6}(k+1)(\{k+1\}+1)(2\{k+1\}+1) = \frac{1}{6}(k+1)(k+2)(2k+3)$ for third M1	divii
	Expands to $\frac{1}{6}(k+1)(2k^2+7k+6)$ and show equal to $\sum_{k=1}^{k+1}r^2=\frac{1}{6}k(k+1)(2k+1)+(k+1)^2$ for A1	A1
	So true for $n = k + 1$ if true for $n = k$, and true for $n = 1$, so true by induction for all n .	A1cso
	be the form with the form with the form of the control of the form	(6)
	(b) $\sum_{r=1}^{n} (r^2 + 5r + 6) = \sum_{r=1}^{n} r^2 + 5 \sum_{r=1}^{n} r + (\sum_{r=1}^{n} 6)$	M1
	$\frac{1}{6}n(n+1)(2n+1) + \frac{5}{2}n(n+1), +6n$	A1, B1
	$= \frac{1}{6}n[(n+1)(2n+1) + 15(n+1) + 36]$	M1
	$= \frac{1}{6}n[2n^2 + 18n + 52] = \frac{1}{3}n(n^2 + 9n + 26) \qquad \text{or } a = 9, b = 26$	A1 (5)
		(3)
	(c) $\sum_{r=n+1}^{2n} (r+2)(r+3) = \frac{1}{3} 2n(4n^2+18n+26) - \frac{1}{3}n(n^2+9n+26)$	M1 A1ft
	$\frac{1}{3}n(8n^2 + 36n + 52 - n^2 - 9n - 26) = \frac{1}{3}n(7n^2 + 27n + 26) $ (*)	A1cso
	$\frac{-n(0n+30n+32-n-3n-20)-\frac{-n(n+2n+20)}{3}$	(3)
		14 marks
	Notes:	
	(a) B1: Checks $n = 1$ on both sides and states true for $n = 1$ here or in conclusion	
	M1: Assumes true for $n = k$ (should use one of these two words)	
	M1: Adds (k+1)th term to sum of k terms	

M1: Adds (k+1)th term to sum of k terms A1: Correct work to support proof M1: Deduces $\frac{1}{6}n(n+1)(2n+1)$ with n = k+1

A1: Makes induction statement. Statement true for n = 1 here could contribute to B1 mark earlier