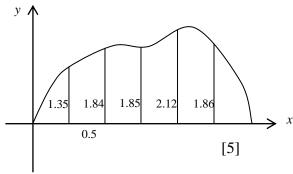

Edexcel A level Maths Numerical methods

Topic assessment

- 1. (i) By considering turning points, show that $x^3 3x^2 + 5 = 0$ has only one real root and that this root lies between -2 and -1. [4]
 - (ii) Show that this root is -1.104, correct to 3 d.p. [2]
- 2. (i) By sketching the line y = x + 7 and the curve $y = \frac{1}{8}x^4$, show that the equation $x^4 8x 56 = 0$ has two real roots. [3]
 - (ii) Show that the positive root lies between x = 2 and x = 3. [2]
 - (iii) Use the iterative formula $x_{n+1} = \sqrt[4]{8x_n + 56}$, starting from x = 3, to find the value of the positive root correct to 2 decimal places. [4]
- 3. (i) Show that the equation $e^x = x^3 1$ has a real root between x = 2 and x = 3.
 - (ii) Use the iterative formula $x_{n+1} = \frac{e^{x_n} + 1}{x_n^2}$, starting from $x_0 = 2$, to find two further approximations to the root. [4]
 - (iii) Show that the root is 2.081 correct to 3 decimal places. [2]
- 4. (i) Show that the gradient of $y = 2x^3 + 4x 5$ is always positive and deduce that the equation $2x^3 + 4x 5 = 0$ has one real root only. [2]
 - (ii) Show that this root lies between x = 0 and x = 1. [2]
 - (iii) Show that the equation can be rearranged into the form $x = \frac{5}{2x^2 + 4}$. [2]
 - (iv) Using the iterative formula $x_{n+1} = \frac{5}{2x_n^2 + 4}$ and starting from $x_0 = 1$, find the next two approximations x_1 and x_2 to the root. [4]
 - (v) The diagram below shows part of the graphs of y = x and $y = \frac{5}{2x^2 + 4}$, and the position of x_0 .

Edexcel A level Maths Num methods Assessment

Copy the diagram and draw on it a staircase or cobweb diagram to illustrate how the iterations converge to the root. Indicate the positions of x_1 and x_2 on the x-axis. [2]


(vi) Show that the root is 0.893 correct to 3 decimal places. [2]

- 5. The root of the equation $x^3 x + 5 = 0$ is denoted by α .

 Taking a first approximation $x_1 = -2$, use the Newton-Raphson method to find the value of α correct to 4 decimal places. [6]
- 6. The diagram shows a cross-section of a tunnel. The height is measured in metres every 0.5 metres along the cross section.

 Use the trapezium rule to estimate the area of the cross-section.

Is it an under-estimate or over-estimate?

- 7. An estimate is required for the integral $\int_0^1 x \sqrt{x^3 + 1} dx$.
 - (i) Using 5 rectangles, find overestimates and underestimates for the value of the integral. [6]
 - (ii) If 20 rectangles were used, find the difference between the overestimate and underestimate for the value of this integral. [3]
 - (iii)The difference between the overestimate and the underestimate is required to be less than 0.001.

Find the minimum number of rectangles required. [3]

Total 60 marks