C4 Vectors Questions ANSWERS (77 marks)

Jan 2012

7.
$$\overrightarrow{OA} = 2\mathbf{i} - \mathbf{j} + 5\mathbf{k}$$
, $\overrightarrow{OB} = 5\mathbf{i} + 2\mathbf{j} + 10\mathbf{k}$, $\{\overrightarrow{OC} = 2\mathbf{i} + 4\mathbf{j} + 9\mathbf{k}\}\}$ & $\overrightarrow{OD} = -\mathbf{i} + \mathbf{j} + 4\mathbf{k}$

(a) $\overrightarrow{AB} = \pm ((5\mathbf{i} + 2\mathbf{j} + 10\mathbf{k}) - (2\mathbf{i} - \mathbf{j} + 5\mathbf{k})); = 3\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$

(b) $I: \mathbf{r} = \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 3 \\ 5 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} 5 \\ 2 \\ 1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 3 \\ 5 \end{pmatrix}$ See notes

M1 A1ft

(c) $\overrightarrow{AD} = \overrightarrow{OD} - \overrightarrow{OA} = \begin{pmatrix} -1 \\ 1 \\ 4 \end{pmatrix} - \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \\ -1 \end{pmatrix}$ or $\overrightarrow{DA} = \begin{pmatrix} 3 \\ -2 \\ 1 \\ -1 \end{pmatrix}$

(d) $\overrightarrow{OC} = \overrightarrow{OD} + \overrightarrow{DC} = \overrightarrow{OD} + \overrightarrow{AB} = (-\mathbf{i} + \mathbf{j} + 4\mathbf{k}) + (3\mathbf{i} + 3\mathbf{j} + 5\mathbf{k})$

(e) $\overrightarrow{AD} = \overrightarrow{OD} + \overrightarrow{DC} = \overrightarrow{OD} + \overrightarrow{AB} = (5\mathbf{i} + 2\mathbf{j} + 10\mathbf{k}) + (-3\mathbf{i} + 2\mathbf{j} - \mathbf{k})$

(f) $\overrightarrow{AB} = \pm \mathbf{i} + \mathbf$

Jan 2012

7. (a) M1: Finding the difference between \overrightarrow{OB} and \overrightarrow{OA} .

Can be implied by two out of three components correct in 3i + 3j + 5k or -3i - 3j - 5k

- A1: 3i + 3j + 5k
- (b) M1: An expression of the form (3 component vector) $\pm \lambda$ (3 component vector)

Alft: $\mathbf{r} = \overline{OA} + \lambda \left(\text{their } \pm \overline{AB} \right) \text{ or } \mathbf{r} = \overline{OB} + \lambda \left(\text{their } \pm \overline{AB} \right).$

Note: Candidate must begin writing their line as $\mathbf{r} = \text{ or } l = \dots \text{ or } \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \dots \text{ So, Line} = \dots \text{ would be A0.}$

(c) M1: An attempt to find either the vector \overrightarrow{AD} or \overrightarrow{DA} .

Can be implied by two out of three components correct in -3i + 2j - k or 3i - 2j + k, respectively.

M1: Applies dot product formula between their $(\overline{AB} \text{ or } \overline{BA})$ and their $(\overline{AD} \text{ or } \overline{DA})$.

Alft: Correct followed through expression or equation. The dot product must be correctly followed through correctly and the square roots although they can be un-simplified must be followed through correctly.

A1: Obtains an angle of awrt 109 by correct solution only.

Award the final A1 mark if candidate achieves awrt 109 by either taking the dot product between:

(i)
$$\begin{pmatrix} 3 \\ 3 \\ 5 \end{pmatrix}$$
 and $\begin{pmatrix} -3 \\ 2 \\ -1 \end{pmatrix}$ or (ii) $\begin{pmatrix} -3 \\ -3 \\ -5 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}$. Ignore if any of these vectors are labelled incorrectly.

Award A0, cso for those candidates who take the dot product between:

(iii)
$$\begin{pmatrix} -3 \\ -3 \\ -5 \end{pmatrix}$$
 and $\begin{pmatrix} -3 \\ 2 \\ -1 \end{pmatrix}$ or (iv) $\begin{pmatrix} 3 \\ 3 \\ 5 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}$

They will usually find awrt 71 and apply 180 – awrt 71 to give awrt 109. If these candidates give a convincing detailed explanation which must include reference to the direction of their vectors then this can be given A1 cso. If still in doubt, here, send to review.

(d) M1: Applies either \overrightarrow{OD} + their \overrightarrow{AB} or \overrightarrow{OB} + their \overrightarrow{AD} .

This mark can be implied by two out of three correctly followed through components in their \overrightarrow{OD} .

- A1: For 2i + 4j + 9k.
- (e) M1: $\frac{1}{2}$ (their AB) (their CB) sin (their 109° or 71° from (b)). Awrt 11.6 will usually imply this mark.

dM1: Multiplies this by 2 for the parallelogram. Can be implied.

Note: $\frac{1}{2}$ ((their AB + their AB))(their CB)sin(their 109° or 71° from (b))

- A1: awrt 23.2
- (f) M1: $\frac{d}{\text{their } AD} = \sin(\text{their } 109^{\circ} \text{ or } 71^{\circ} \text{ from (b)}) \text{ or (their } AB) d = (\text{their Area } ABCD)$

Award M0 for (their AB) in part (f), if the area of their parallelogram in part (e) is

(their AB)(their CB).

Award M0 for
$$\frac{d}{\text{their }\sqrt{43}} = \sin 71$$
 or $(\text{their }\sqrt{14})d = 23.19894905...$

A1: awrt 3.54

Note: Some candidates will use their answer to part (f) in order to answer part (e).

June 2011

Jan 2011

Question Number	Scheme	Marks	Marks	
4. (a)	$\overrightarrow{AB} = -2\mathbf{i} + 2\mathbf{j} - \mathbf{k} - (\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}) = -3\mathbf{i} + 5\mathbf{j} - 3\mathbf{k}$	M1 A1	(2)	
(b)	$\mathbf{r} = \mathbf{i} - 3\mathbf{j} + 2\mathbf{k} + \lambda \left(-3\mathbf{i} + 5\mathbf{j} - 3\mathbf{k} \right)$	M1 A1ft	(2)	
	or $\mathbf{r} = -2\mathbf{i} + 2\mathbf{j} - \mathbf{k} + \lambda(-3\mathbf{i} + 5\mathbf{j} - 3\mathbf{k})$			
(c)	$\overline{AC} = 2\mathbf{i} + p\mathbf{j} - 4\mathbf{k} - (\mathbf{i} - 3\mathbf{j} + 2\mathbf{k})$			
	$= \mathbf{i} + (p+3)\mathbf{j} - 6\mathbf{k} \qquad \text{or } \overline{C}$	Ā B1		
	$\overrightarrow{AC}.\overrightarrow{AB} = \begin{pmatrix} 1 \\ p+3 \\ -6 \end{pmatrix}. \begin{pmatrix} -3 \\ 5 \\ -3 \end{pmatrix} = 0$ $-3+5p+15+18=0$	M1		
	Leading to $p = -6$	M1 A1	(4)	
(d)	$AC^{2} = (2-1)^{2} + (-6+3)^{2} + (-4-2)^{2} (=46)$	M1		
	$AC = \sqrt{46}$ accept awrt 6.8	3 A1	(2) [10]	

June 2010

•		ı	
7.	(a) j components $3+2\lambda=9 \Rightarrow \lambda=3$	M1 A1	(3)
	(b) Choosing correct directions or finding \overrightarrow{AC} and \overrightarrow{BC}	M1	
	$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} = 5 + 2 = \sqrt{6}\sqrt{29}\cos\angle ACB$ use of scalar product	M1 A1	
	$\angle ACB = 57.95^{\circ}$ awrt 57.95°	A1	(4)
	(c) $A:(2,3,-4) B:(-5,9,-5)$		
	$\overrightarrow{AC} = \begin{pmatrix} 3 \\ 6 \\ 3 \end{pmatrix}, \overrightarrow{BC} = \begin{pmatrix} 10 \\ 0 \\ 4 \end{pmatrix}$		
	$AC^2 = 3^2 + 6^2 + 3^2 \implies AC = 3\sqrt{6}$	M1 A1	
	$BC^2 = 10^2 + 4^2 \implies BC = 2\sqrt{29}$	A1	
	$\triangle ABC = \frac{1}{2}AC \times BC \sin \angle ACB$		
	$= \frac{1}{2} 3\sqrt{6} \times 2\sqrt{29} \sin \angle ACB \approx 33.5 \qquad 15\sqrt{5}, \text{ awrt } 34$	M1 A1	(5)
	2		[12]
	Alternative method for (b) and (c)		
	(b) $A:(2,3,-4)$ $B:(-5,9,-5)$ $C:(5,9,-1)$		
	$AB^2 = 7^2 + 6^2 + 1^2 = 86$		
	$AC^2 = 3^2 + 6^2 + 3^2 = 54$		
	$BC^2 = 10^2 + 0^2 + 4^2 = 116$ Finding all three sides	M1	
	$\cos \angle ACB = \frac{116 + 54 - 86}{2\sqrt{116}\sqrt{54}}$ (= 0.53066)	M1 A1	
	$\angle ACB = 57.95^{\circ}$ awrt 57.95°	A1	(4)
	If this method is used some of the working may gain credit in part (c) and appropriate marks may be awarded if there is an attempt at part (c).		(,)

Jan 2010

(a) A: (-6, 4, -1)Accept vector forms Q4 (b) $\begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix} \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix} = 12 + 4 + 3 = \sqrt{4^2 + (-1)^2 + 3^2} \sqrt{3^2 + (-4)^2 + 1^2} \cos \theta$ M1 A1 $\cos \theta = \frac{19}{26}$ awrt 0.73 (3) (c) X: (10, 0, 11) Accept vector forms В1 (1) (d) $\overrightarrow{AX} = \begin{pmatrix} 10 \\ 0 \\ 11 \end{pmatrix} - \begin{pmatrix} -6 \\ 4 \\ -1 \end{pmatrix}$ Either order M1 Α1 (2)cao (e) $|\overrightarrow{AX}| = \sqrt{16^2 + (-4)^2 + 12^2}$ M1 $=\sqrt{416} = \sqrt{16 \times 26} = 4\sqrt{26}$ * (2)A1 Do not penalise if consistent incorrect signs in (d) (f) Use of correct right angled triangle M1 $\frac{|\overrightarrow{AX}|}{d} = \cos \theta$ M1 $d = \frac{4\sqrt{26}}{\frac{19}{26}} \approx 27.9$ awrt 27.9 A1 (3) [12]

June 2009

Q7 (a)
$$\overline{AB} = \overline{OB} - \overline{OA} = \begin{pmatrix} 10 \\ 14 \\ -4 \end{pmatrix} - \begin{pmatrix} 8 \\ 13 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$$
 or $\overline{BA} = \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix}$ M1

$$r = \begin{pmatrix} 8 \\ 13 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \text{ or } r = \begin{pmatrix} 10 \\ 14 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$$
 accept equivalents M1 AIft (3)

(b) $\overline{CB} = \overline{OB} - \overline{OC} = \begin{pmatrix} 10 \\ 14 \\ -4 \end{pmatrix} - \begin{pmatrix} 9 \\ 9 \\ 6 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \\ -10 \end{pmatrix}$ or $\overline{BC} = \begin{pmatrix} -1 \\ -5 \\ 10 \end{pmatrix}$

$$CB = \sqrt{(1^2 + 5^2 + (-10)^2)} = \sqrt{(126)} \quad (= 3\sqrt{14} \times 11.2) \quad \text{awrt } 11.2$$
 M1 A1 (2)

(c) $\overline{CB}.\overline{AB} = |\overline{CB}||\overline{AB}||\cos\theta$

$$(\pm)(2 + 5 + 20) = \sqrt{126}\sqrt{9}\cos\theta$$

$$(\pm)(2 + 5 + 20) = \sqrt{126}\sqrt{9}\cos\theta$$

$$\cos\theta = \frac{3}{\sqrt{14}} \Rightarrow \theta \approx 36.7^{\circ} \quad \text{awrt } 36.7^{\circ}$$
 A1 (3)

(d)
$$\frac{B}{\sqrt{126}} = \sin\theta \quad \text{or } B = \frac{1}{2} \times BX \times d = \frac{1}{2} \times 9 \times 3\sqrt{5} = \frac{27\sqrt{5}}{2} (\approx 30.2) \quad \text{awrt } 30.1 \text{ or } 30.2$$
 M1 A1 (3)

$$Alternative \ for \ (e)$$

$$! \ CBX = \frac{1}{2} \times d \times BC \sin \angle XCB$$

$$= \frac{1}{2} \times 3\sqrt{5} \times \sqrt{126}\sin(90 - 36.7)^{\circ} \quad \text{sine of correct angle}$$

$$\approx 30.2 \quad \frac{27\sqrt{5}}{2}, \text{ awrt } 30.1 \text{ or } 30.2$$
 M1

A1 (3)