Mark schemes

Q1.

(a) Use of $(\sum \alpha)^2 = \sum \alpha^2 + 2\sum \alpha \beta$

M1

AG

A1 2

(b) p = 0, q = 5 + 6i

B1,B1

(c) (i) Substitute 3i for z or use $3i\beta\gamma = -r$ allow for $3i\beta\gamma = r$

M1

-27i + 15i - 18 + r = 0 or $\beta \gamma = 5 + 6i + \alpha^2$ any form

Α1

r = 18 + 12i one error

A1F

- - - -

3

2

(ii) Cubic is $(z - 3i)(z^2 + 3iz - 4 + 6i)$

or use of $\beta \gamma$ and $\beta + \gamma$ clearly shown

M1A1

(iii) f(-2) = 0 or equate imaginary parts

M1

 $\beta = -2, \ \gamma = 2 - 3i$

correct answers no working and no check B1 only

A1,A1F

3

[12]

Q2.

(d) Replace
$$z$$
 by $\frac{1}{z}$ in cubic equation
$$\sum \frac{1}{\alpha} = -\frac{p}{q}, \sum \frac{1}{\alpha\beta} = 0, \frac{1}{\alpha\beta\gamma} = -\frac{1}{q}$$
 ft on incorrect p and f or f

M1 A1F

 $520z^3 + z^2 + 1 = 0$ coefficients must be integers *CAO*

Α1

3

[13]

Q3.

(a)
$$\alpha + \beta = -\frac{7}{2}$$

B1

$$\alpha\beta = 4$$

B1

(b)
$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \left(-\frac{7}{2}\right)^2 -2(4)$$
Using correct identity with ft or correct substitution

M1

Α1

$$=\frac{49}{4}-8=\frac{17}{4}$$

CSO AG. A0 if α + β has wrong sign

2

(c) (Sum =)
$$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{(\alpha \beta)^2} = \frac{\frac{17}{4}}{16} \left(= \frac{17}{64} \right)$$

Writing $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$ in a correct suitable form with ft or correct substitution

M1

$$=\frac{17}{64}$$

ft wrong value for $\alpha\beta$

A1F

$$(\text{Product} =) \frac{1}{(\alpha \beta)^2} = \frac{1}{16} \left(= \frac{4}{64} \right)$$

ft wrong value for $\alpha\beta$

B1F

$$x^2 - Sx + P (= 0)$$

Using correct general form of LHS of eqn with ft substitution of c's S and P values. Pl

M1

Eqn is $64x^2 - 17x + 4 = 0$

CSO Integer coefficients and '= 0' needed

Α1

[9]

Q4.

(a) (i)
$$(\alpha\beta\gamma =) -37 + 36i$$

B1

1

5

(ii)
$$(\beta \gamma =)$$
 $(-2 + 3i)(1 + 2i) = -2 + 3i - 4i - 6$
correct unsimplified but must simplify i^2

M1

$$(-8 - i) \alpha = -37 + 36i$$

 $\Rightarrow (8 + i) \alpha = 37 - 36i$

AG be convinced

A1cso

2

(iii)
$$\Rightarrow \alpha = \frac{37 - 36i}{8 + i} \times \frac{8 - i}{8 - i}$$

M1

$$= \frac{296 - 37i - 288i - 36}{65}$$

correct unsimplified

Α1

$$= \frac{260 - 325i}{65} = 4 - 5i$$

A1cao

3

Alternative:

$$(8+i)(m+n\ i) = 37-36i$$

 $8m-n=37; m+8n=-36$

(M1)

either m = 4 or n = -5

(A1)

 $\alpha = 4 - 5i$

(A1)

(3)

(b)
$$\alpha + \beta + \gamma = -p$$

 $-2 + 3i + 1 + 2i + 4 - 5i = 3$
 $(\Rightarrow p =) -3$

В1

1

2

(c) $\alpha\beta + \beta\gamma + \gamma\alpha = q$

 $q = \sum \alpha \beta$ and attempt to evaluate three products FT "their" α

$$(7 + 22i) + (-8 - i) + (14 + 3i) = q$$

M1

$$q = 13 + 24i$$

A1cao

[9]

Q5.

(a) (i) $\alpha + \beta + \gamma = 5$

B1

 $\alpha\beta\gamma = 4$

B1

(ii) $\alpha\beta\gamma^2 + \alpha\beta^2\gamma + \alpha^2\beta\gamma = \alpha\beta\gamma(\alpha + \beta + \gamma)$

M1

 $= 5 \times 4 = 20$

FT their results from (a)(i)

A1√

2

2

(b) (i) If
$$\alpha$$
, β , γ are all real then $\alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2 \ge 0$

Hence α , β , γ cannot all be real argument must be sound

E1

1

(ii)
$$\alpha\beta + \beta\gamma + \gamma\alpha = k$$

 $\sum \alpha\beta = k \quad PI$

В1

$$(\alpha\beta + \beta\gamma + \gamma\alpha)^2 = \sum \alpha^2\beta^2 + 2(\alpha\beta\gamma^2 + \alpha\beta^2\gamma + \alpha^2\beta\gamma)$$
correct identity for $(\sum \alpha\beta)^2$

M1

=
$$-4 + 2(20)$$

substituting their result from (a)(ii)

A1√

$$k = \pm 6$$

must see $k = ...$

A1 cso

[9]

Q6.

(a)
$$\alpha + \beta = -\frac{3}{2}$$

В1

$$\alpha\beta$$
 = -3 OE

B1

2

(b)
$$\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$$

Using correct identity for $\alpha^3 + \beta^3$ in terms of $\alpha + \beta$ and $\alpha\beta$.

M1

$$= \left(-\frac{3}{2}\right)^{3} - 3(-3)(-3/2)$$
with ft / or correct substitution

A1F

$$=-\frac{27}{8}-\frac{27}{2}=-\frac{135}{8}$$

CSO AG. Correct evaluation of each of $(-1.5)^3$ and -3(-3)(-1.5) must be seen before the printed answer is stated

Α1

3

(c) Sum =
$$\alpha + \frac{\alpha}{\beta^2} + \beta + \frac{\beta}{\alpha^2} = \alpha + \beta + \frac{\alpha^3 + \beta^3}{(\alpha\beta)^2} = -\frac{3}{2} + \frac{-135/8}{9}$$

$$\frac{\alpha}{\alpha^2} + \beta + \frac{\beta}{\alpha^2}$$

Writing $\alpha + \frac{\alpha}{\beta^2} + \beta + \frac{\beta}{\alpha^2}$ in a suitable form with ft/or correct substitution

M1

$$Sum = -\frac{27}{8}$$

PI OE exact value eg = 3.375 (A0 if $\alpha\beta$ = 3 used to get $(\alpha\beta)^2$ = 9)

Α1

Product =
$$\alpha\beta + \frac{\beta}{\alpha} + \frac{\alpha}{\beta} + \frac{1}{\alpha\beta} = \alpha\beta + \frac{\alpha^2 + \beta^2}{\alpha\beta} + \frac{1}{\alpha\beta}$$
 (*)

Now
$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta (= \frac{9}{4} + 6)$$

(*) OE with correct identity for $\alpha^2 + \beta^2$ used in (c). Subst of values not required but PI by correct value of Product

M1

Product =
$$-3 - \frac{1}{3} \left(\frac{9}{4} + 6 \right) - \frac{1}{3} = -\frac{73}{12}$$

PI OE exact value

A1

$$x^2 - Sx + P (= 0)$$

Using correct general form of LHS of eqn **with** ft substitution of c's S and P values.

M1

Eqn is
$$24x^2 + 81x - 146 = 0$$

OE but integer coefficients and ' = 0' needed

Α1

6

[11]

Q7.

(a) (i)
$$\alpha + \beta + \gamma = 4i$$

B1

1

(ii)
$$\alpha \beta \gamma = 4 - 2i$$

B1

1

(b) (i)
$$\alpha + \alpha = 4i, \quad \alpha = 2i$$

AG

B1

1

(ii)
$$\beta y = \frac{4-2i}{2i} = -2i -1$$

Some method must be shown, eg $\frac{2}{i}-1$

M1

AG

Α1

2

(iii)
$$q = \alpha \beta + \beta \gamma + \gamma \alpha$$

M1

=
$$\alpha(\beta + \gamma) + \beta \gamma$$

Or $\alpha^2 + \beta \gamma$, ie suitable grouping

M1

$$= 2i.2i - 2i - 1 = -2i - 5$$
AG

Α1

3

(c) Use of
$$\beta$$
 + γ = 2i and $\beta\gamma$ = -2i -1

M1

$$z^2 - 2iz - (1 + 2i) = 0$$

Elimination of say f to arrive at $f^2 - 2i f$ – f

2

(d)
$$f(-1) = 1 + 2i - 1 - 2i = 0$$

For any correct method

M1

$$\beta$$
 = -1, γ = 1 + 2i

A1 for each answer

A1A1

3

[13]

Q8.

Marking Instructions	АО	Marks	Typical Solution
Writes β and γ in the form $p \pm q{\rm i}$ (seen anywhere in the solution)	AO2.5	B1	Real coefficients $\Rightarrow \beta = p + qi$ and $\gamma = p - qi$
Uses "sum of the roots = $-b/a$ " together with a conjugate pair to determine the real part (p) of β and γ	AO3.1a	M1	$\alpha + \beta + \gamma = 8$ $\Rightarrow 2 + p + qi + p - qi = 8$ $\Rightarrow 2 + 2p = 8$ $\Rightarrow p = 3$
Uses '(their p)' – 2 and the area of the triangle on an Argand diagram to determine the imaginary parts of β and γ	AO3.1a	M1	$(p-2)q = 8$ $\Rightarrow q = 8$ $ m - q $ $ $
Uses a correct method to find the value of c or d using 'their' values of $p \pm qi$	AO1.1a	M1	$\beta = 3 + 8i \text{ and } \gamma = 3 - 8i$
Obtains correct values for c and d . CAO	AO1.1b	A1	$d = -\alpha\beta\gamma = -146$ $c = \sum \alpha\beta = 85$
			Total 5 marks

Q9.

(a)
$$\alpha + \beta = -2$$

В1

 $\alpha\beta = -5$

B1

ı

2

(b)
$$\alpha^2 + \beta^2 = (\alpha^2 + \beta^2)^2 - 2\alpha\beta = (-2)^2 - 2(-5)$$

OE Using correct identity for $\alpha^2 + \beta^2$ with ft or correct substitution

M1

= 14

CSO A0 if $\alpha + \beta$ has wrong sign

Α1

2

(c)
$$\alpha^3 \beta + \alpha \beta^3 = \alpha \beta (\alpha^2 + \beta^2)$$

PI Seen at least once in part (c).

OE eg $\alpha^3\beta + \alpha\beta^3 = \alpha\beta[(\alpha + \beta)^2 - 2\alpha\beta]$

M1

$$S(um) = \alpha^3 \beta + \alpha \beta^3 + 2 = (-5)(14) + 2 = -68$$

Correct or ft c's $\alpha\beta \times$ c's [answer (b)] + 2

A1F

$$P(\text{roduct}) = (\alpha \beta)^4 + \alpha^3 \beta + \alpha \beta^3 + 1 = (-5)^4 + (-5)(14) + 1 = 556$$

Correct or

ft [c's $\alpha\beta$]⁴ + c's $\alpha\beta \times$ c's [answer (b)] + 1

A1F

$$x - Sx + P (=0)$$

Using correct general form of LHS of eqn **with** ft substitution of c's S and P values.

M1

Eqn.:
$$x^2 + 68x + 556 = 0$$

CSO ACF

Α1

5

[9]

Q10.

Marking Instructions	AO	Marks	Typical Solution			
Writes the expression in terms of $\sum \alpha$ and $\sum \alpha \beta$ Award for correct expansion followed by use of $\sum \alpha^2 = (\sum \alpha)^2 - 2\sum \alpha \beta$	AO3.1a	M1	$(\alpha - \beta)^2 + (\gamma - \alpha)^2 + (\beta - \gamma)^2$ $= \alpha^2 - 2\alpha\beta + \beta^2 + \gamma^2 - 2\gamma\alpha + \alpha^2 + \beta^2 - 2\beta\gamma + \gamma^2$ $= 2\alpha^2 + 2\beta^2 + 2\gamma^2 - 2\alpha\beta - 2\gamma\alpha - 2\beta\gamma$ $= 2\sum \alpha^2 - 2\sum \alpha\beta$ $= 2((\sum \alpha)^2 - 2\sum \alpha\beta) - 2\sum \alpha\beta$			
Substitutes $\pm m$ for $\sum \alpha$ and $\pm n$ for $\sum \alpha \beta$	AO1.1a	1a M1 = $2(\sum \alpha)^2 - 6\sum \alpha \beta$ = $2(-m)^2 - 6 \times n = 2m^2 - 6n$				
Gives a reason for expression ≥ 0 Condone lack of reference to roots being real.	AO2.4	E1	But as α , β and γ are real then each of $(\alpha - \beta)^2$, $(\gamma - \alpha)^2$ and $(\beta - \gamma)^2$ must be non-negative. $\therefore (\alpha - \beta)^2 + (\gamma - \alpha)^2 + (\beta - \gamma)^2 \ge 0$			
Completes fully correct proof to reach the required result. This mark is only available if all previous marks have been awarded. Lose this mark for sight of $\sum \alpha = m$	AO2.1	R1	$\therefore 2m^2 - 6n \ge 0$ $2m^2 \ge 6n$ $m^2 \ge 3n$ AG			
Total 4 marks						

Q11.

(a) (i) $\alpha + \beta = 4$, $\alpha\beta = 13$

B1B1

(ii)
$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$

M1

$$... = 4^2 - 26 = -10$$

convincingly shown (AG)

Α1

2

(iii) The square of a real number is positive (or zero)

E1

The sum of two such squares is positive (or zero)

E1

2

(b) (i)
$$(\alpha + i) + (\beta + i) = 4 + 2i$$

ft wrong value in (a)(i)

B1F

(ii) $(\alpha + i)(\beta + i) = 12 + 4i$ ditto

M1A1F

Correct coeff of x or constant term
Using c's answers in (b)M1

(c)

 $x^{2} - (4 + 2i) x + (12 + 4i) = 0$ ft wrong answers in (b)

A1F

[11]

Page 12 of 12