Year 2 Pure Chapter 7: Double Angle - Exam Questions (37 Marks)

1) Determine all the values of x between 0 and 2π which satisfy the equation

$$5\cos 2x + 3\sin x = 4,$$

giving your answers in radians to three significant figures or exactly in terms of π .

(Total 7 marks)

2) Solve the equation

$$3\cos 2\theta - \cos \theta + 1 = 0$$

giving all solutions in degrees to the nearest degree in the interval $0^{\circ} \le \theta \le 360^{\circ}$.

(Total 6 marks)

(b) Use the identity $\cos (A + B) = \cos A \cos B - \sin A \sin B$ to show that

$$\cos 2x = 2\cos^2 x - 1.$$
 (2)

(c) Hence solve the equation

$$\cos 2x + 3\cos x - 1 = 0$$
 for $0 \le x \le 2\pi$. (5) (Total 9 marks)

- 4) (a) (i) Express $\sin 2x$ in terms of $\sin x$ and $\cos x$.
 - (ii) Express $\cos 2x$ in terms of $\cos x$.

(b) Show that

 $\sin 2x - \tan x = \tan x \cos 2x$

for all values of x.

(3)

(c) Solve the equation $\sin 2x - \tan x = 0$, giving all solutions in degrees in the interval $0^{\circ} < x < 360^{\circ}$.

(4)

(Total 9 marks)

5) Solve the equation

 $3 \sin\theta \sin 2\theta = 2\cos^3\theta$,

giving all solutions in radians in the interval $0 \le \theta \le 2\pi$, leaving your answers in terms of π .

(Total 6 marks)