Constant acceleration

Gold

A particle passes the origin O with a velocity of $4 \,\mathrm{m\,s^{-1}}$ and accelerates along the positive x-axis with an acceleration of $4 \,\mathrm{m\,s^{-2}}$. Five seconds later a second particle sets out from rest from O and travels along the positive x-axis with an acceleration of $10 \,\mathrm{m\,s^{-2}}$. Find how far from O the second particle overtakes the first particle giving your answer to the nearest metre.

Silver

A car is moving along a straight road PQR with uniform acceleration a m s⁻². The distance PQ is 95 m. The time taken by the car to travel from P to Q is 5 s and the time taken to travel from Q to R is 2 s. At P the speed of the car is u m s ⁻¹ and at R, its speed is 29.8 m s ⁻¹.

- a Draw a velocity-time graph to show the motion of the car
- **b** Find the value of u in m s⁻¹
- **c** Find the value of the acceleration *a* in m s⁻²

Bronze

A particle sets out from the origin in a straight line with a velocity of u m s⁻¹ and accelerates for 10 seconds until it reaches a velocity of 4 m s⁻¹. It then maintains this constant velocity for 10 seconds until it decelerates to rest in 5 s. The total distance travelled by the particle is 80 m.

- **a** Sketch a velocity–time graph to show the motion of the particle.
- **b** Find the value of *u*.
- **c** Find the deceleration of the particle.