Q1.

The numbers α , β and γ satisfy the equations

$$\alpha^2 + \beta^2 + \gamma^2 = -10 - 12i$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = 5 + 6i$$

(a) Show that $\alpha + \beta + \gamma = 0$.

(2)

(b) The numbers α , β and γ are also the roots of the equation

$$z^3 + pz^2 + qz + r = 0$$

Write down the value of p and the value of q.

(2)

- (c) It is also given that $\alpha = 3i$.
 - (i) Find the value of r.

(3)

(ii) Show that β and γ are the roots of the equation

$$z^2 + 3iz - 4 + 6i = 0$$

(2)

(iii) Given that β is real, find the values of β and γ .

(3)

(Total 12 marks)

Q2.

The cubic equation

$$z^3 + pz + q = 0$$

has roots α , β and γ .

(a) (i) Write down the value of $\alpha + \beta + \gamma$.

(1)

(ii) Express $\alpha\beta\gamma$ in terms of q.

(1)

(b) Show that

$$\alpha^3 + \beta^3 + \gamma^3 = 3\alpha\beta\gamma$$

(3)

(c) Given that $\alpha = 4 + 7i$ and that p and q are real, find the values of :

(i) β and γ ;

(2)

(ii) p and q.

(3)

(d) Find a cubic equation with integer coefficients which as roots, $\frac{1}{\alpha}$, $\frac{1}{\beta}$ and $\frac{1}{\gamma}$.

(3)

(Total 13 marks)

Q3.

The quadratic equation

$$2x^2 + 7x + 8 = 0$$

has roots α and β .

(a) Write down the values of $\alpha + \beta$ and $\alpha\beta$.

(2)

(b) Show that $\alpha^2 + \beta^2 = \frac{17}{4}$.

(2)

(c) Find a quadratic equation, with integer coefficients, which has roots

$$\frac{1}{\alpha^2}$$
 and $\frac{1}{\beta^2}$

(5)

(Total 9 marks)

Q4.

The cubic equation

$$z^3 + pz^2 + qz + 37 - 36i = 0$$

where p and q are constants, has three complex roots, α , β and γ . It is given that $\beta = -2 + 3i$ and $\gamma = 1 + 2i$.

(a) (i) Write down the value of $\alpha\beta\gamma$.

(1)

(ii) Hence show that $(8 + i)\alpha = 37 - 36i$.

(2)

(iii) Hence find α , giving your answer in the form m + ni, where m and n are integers.

(3)

(b) Find the value of p.

(1)

(c) Find the value of the complex number q.

(2)

(Total 9 marks)

Q5.

The roots of the equation

$$z^3 - 5z^2 + kz - 4 = 0$$

are α , β and γ .

(a) (i) Write down the value of $\alpha + \beta + \gamma$ and the value of $\alpha\beta\gamma$.

(2)

(ii) Hence find the value of $\alpha^2\beta\gamma + \alpha\beta^2\gamma + \alpha\beta\gamma^2$.

(2)

- (b) The value of $\alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2$ is -4.
 - (i) Explain why α , β and γ cannot all be real.

(1)

(ii) By considering $(\alpha\beta + \beta\gamma + \gamma\alpha)^2$, find the possible values of k.

(4)

(Total 9 marks)

Q6.

The equation

$$2x^2 + 3x - 6 = 0$$

has roots α and β .

(a) Write down the value of $\alpha + \beta$ and the value of $\alpha\beta$.

(2)

(b) Hence show that $\alpha^3 + \beta^3 = -\frac{135}{8}$.

(3)

(c) Find a quadratic equation, with integer coefficients, whose roots are $\alpha + \frac{\alpha}{\beta^2}$ and $\beta + \frac{\beta}{\alpha^2}$.

(6)

(Total 11 marks)

Q7.

The cubic equation

$$z^3 - 4iz^2 + qz - (4 - 2i) = 0$$

where q is a complex number, has roots α , β and γ .

(a) Write down the value of:

(i)
$$\alpha + \beta + \gamma$$
; (1)

(ii) $\alpha\beta\gamma$.

(1)

(b) Given that $\alpha = \beta + \gamma$, show that:

(i)
$$\alpha = 2i$$
;

(1)

(ii)
$$\beta \gamma = -(1 + 2i);$$

(2)

(iii)
$$q = -(5 + 2i)$$
.

(3)

(c) Show that β and γ are the roots of the equation

$$z^2 - 2iz - (1 + 2i) = 0$$

(2)

(d) Given that β is real, find β and γ .

(3)

(Total 13 marks)

Q8.

The equation $x^3 - 8x^2 + cx + d = 0$, where c and d are real numbers, has roots α , β , γ .

When plotted on an Argand diagram, the triangle with vertices at α , β , γ has an area of 8.

Given $\alpha = 2$, find the values of c and d.

Fully justify your solution.

(Total 5 marks)

Q9.

The roots of the quadratic equation

$$x^2 + 2x - 5 = 0$$

are α and β

(a) Write down the value of $\alpha + \beta$ and the value of $\alpha\beta$.

(2)

(b) Calculate the value of $\alpha^2 + \beta^2$. (2) Find a quadratic equation which has roots $\alpha^{_3}\beta$ + 1 and $\alpha\beta^{_3}$ + 1. (c) (5) (Total 9 marks) Q10. α , β and γ are the real roots of the cubic equation $x^3 + mx^2 + nx + 2 = 0$ By considering $(\alpha - \beta)^2 + (\gamma - \alpha)^2 + (\beta - \gamma)^2$, prove that $m^2 \ge 3n$ (Total 4 marks) Q11. The equation $x^2 - 4x + 13 = 0$ has roots α and β . Write down the values of $\alpha + \beta$ and $\alpha\beta$. (a) (2) Deduce that $\alpha^2 + \beta^2 = -10$. (ii) (2) Explain why the statement $\alpha^2 + \beta^2 = -10$ implies that α and β cannot both be (iii) (2)

(b) Find in the form p + iq the values of:

> $(\alpha + i) + (\beta + i);$ (i) (1)

 $(\alpha + i) (\beta + i)$. (ii)

(2)

Hence find a quadratic equation with roots (α + i) and (β + i). (c)

(2)

(Total 11 marks)