

KS5 "Full Coverage": Differentiation (Yr2)

This worksheet is designed to cover one question of each type seen in past papers, for each A Level topic. This worksheet was automatically generated by the DrFrostMaths Homework Platform: students can practice this set of questions interactively by going to www.drfrostmaths.com, logging on, *Practise* \rightarrow *Past Papers* (or *Library* \rightarrow *Past Papers* for teachers), and using the 'Revision' tab.

Question 1

Categorisation: Use the chain rule (and differentiate natural logs).

[Edexcel C3 June 2011 Q1a] Differentiate with respect to x

$$ln(x^2 + 3x + 5)$$

$$\frac{d(\ln(x^2+3x+5))}{dx} \dots$$

Question 2

Categorisation: Use the product rule (and differentiate e^x)

[Edexcel C3 June 2007 Q3a] A curve C has equation $y = x^2 e^x$.

Find $\frac{dy}{dx}$, using the product rule for differentiation.

$$\frac{dy}{dx} = \dots$$

Question 3

Categorisation: Use the chain rule combined with product rule.

[Edexcel C3 June 2009 Q4ia] Differentiate with respect to x

$$x^2 \cos 3x$$

$$\frac{d(x^2\cos 3x)}{dx} = \dots$$

Categorisation: Use the quotient rule.

[Edexcel C3 June 2016 Q2a]

$$y = \frac{4x}{x^2 + 5}$$

Find $\frac{dy}{dx}$, writing your answer as a single fraction in its simplest form.

 $\frac{dy}{dx} = \dots$

Question 5

Categorisation: As above.

[Edexcel C3 June 2013(R) Q5a]

Differentiate $\frac{\cos 2x}{\sqrt{x}}$ with respect to x .

.....

Question 6

Categorisation: Further practice of product with chain rule.

[Edexcel A2 SAM P2 Q3]

Given $y = x(2x + 1)^4$, show that

$$\frac{dy}{dx} = (2x+1)^n (Ax+B)$$

where n, A and B are constants to be found.

Categorisation: Differentiate trig functions raised to a power.

[Edexcel C3 June 2005 Q2ai]

Differentiate with respect to x

$$3 \sin^2 x + \sec 2x$$

$$\frac{d}{dx}(3\sin^2 x + \sec 2x) = \dots$$

Question 8

Categorisation: As above, but with a multiple of x.

[Edexcel C3 June 2013(R) Q5b]

Show that $\frac{d}{dx}(\sec^2 3x)$ can be written in the form

$$\mu(\tan 3x + \tan^3 3x)$$

where μ is a constant to be found.

 $u = \dots$

Question 9

Categorisation: Appreciate that ln(kx) differentiates to $\frac{1}{x}$ regardless of k.

[Edexcel C3 June 2012 Q7ai]

Differentiate with respect to x,

$$x^{\frac{1}{2}} ln(3x)$$

$$\frac{d\left(x^{\frac{1}{2}}\ln(3x)\right)}{dx} = \dots$$

Categorisation: Appreciate that $\frac{1}{f(x)g(x)}$ can be written as $f(x)^{-1}g(x)^{-1}$ before differentiating.

[Edexcel C3 June 2013 Q5c]

$$\frac{dy}{dx} = \frac{1}{6x(x-1)^{\frac{1}{2}}}$$

Find an expression for $\frac{d^2y}{dx^2}$ in terms of x . Give your answer in its simplest form.

$$\frac{d^2y}{dx^2} = \dots$$

Question 11

Categorisation: Differentiate in a modelling context.

[Edexcel C3 June 2006 Q4c]

A heated metal ball is dropped into a liquid. As the ball cools, its temperature, T, t minutes after it enters the liquid, is given by

$$T = 400e^{-0.05t} + 25$$
 , $t \ge 0$

Find the rate at which the temperature of the ball is decreasing at the instant when $t=50\,$

.....°C /min

Categorisation: As above.

[Edexcel C3 June 2017 Q8b]

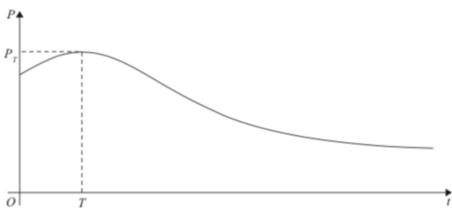


Figure 3

The number of rabbits on an island is modelled by the equation

$$P = \frac{100e^{-0.1t}}{1+3e^{-0.9t}} + 40 , \qquad t \in \mathbb{R} , \ t \ge 0$$

where P is the number of rabbits, t years after they were introduced onto the island.

A sketch of the graph of P against t is shown in Figure 3.

Find $\frac{dP}{dt}$

 $\frac{dP}{dt} = \dots$

Question 13

Categorisation: Use the fact that $\frac{dy}{dx} = 1 \div \frac{dx}{dy}$

[Edexcel C3 June 2017 Q7ii]

Given
$$x = ln (sec 2y)$$
, $0 < y < \frac{\pi}{4}$

find $\frac{dy}{dx}$ as a function of x in its simplest form.

$$\frac{dy}{dx} = \dots$$

Categorisation: Determine $\frac{dy}{dx}$ for expressions of the form x = f(y) where f is a trigonometric function. Note that the specification effectively expects students to differentiate expressions such as $\arcsin x$, even though questions wouldn't explicitly ask as such.

[Edexcel C3 June 2013(R) Q5c]

Given $x=2\sin\left(\frac{y}{3}\right)$, find $\frac{dy}{dx}$ in terms of x , simplifying your answer.

$$\frac{dy}{dx} = \dots$$

Question 15

Categorisation: As above.

[Edexcel C3 June 2016 Q5ii]

Given $x = \sin^2 2y$, $0 < y < \frac{\pi}{4}$, find $\frac{dy}{dx}$ as a function of y.

Write your answer in the form

$$\frac{dy}{dx} = p \ cosec \ (qy) \ , \ 0 < y < \frac{\pi}{4} \ ,$$

where p and q are constants to be determined.

Categorisation: Find the range of values for which a function is increasing or decreasing.

[Edexcel C3 June 2016 Q2b Edited]

$$y = \frac{4x}{x^2 + 5}$$

$$\frac{dy}{dx} = \frac{20 - 4x^2}{(x^2 + 5)^2}$$

Hence find the set of values of x for which $\frac{dy}{dx} < 0$.

.....

Question 17

Categorisation: Use differentiation to determine a turning point.

[Edexcel C3 June 2016 Q5i]

Find, using calculus, the x coordinate of the turning point of the curve with equation

$$y = e^{3x} \cos 4x$$
, $\frac{\pi}{4} \le x < \frac{\pi}{2}$

Give your answer to 4 decimal places.

Categorisation: Use differentiation in the context of numerical methods.

[Edexcel A2 Specimen Papers P2 Q6b Edited]

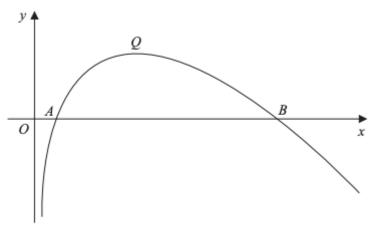


Figure 2

Figure 2 shows a sketch of the curve with equation y = f(x), where

$$f(x) = (8 - x) \ln x, x > 0$$

The curve cuts the x -axis at the points A and B and has a maximum turning point at Q , as shown in Figure 2.

Show that the x coordinate of Q satisfies

$$x = \frac{a}{1 + \ln x}$$

where a is a constant to be found.

Categorisation: Determine a turning point with a more difficult expression.

[Edexcel A2 SAM P1 Q15a Edited]

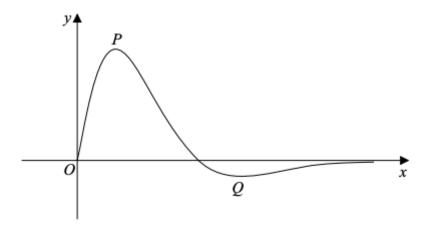


Figure 5

Figure 5 shows a sketch of the curve with equation y = f(x), where

$$f(x) = \frac{4 \sin 2x}{e^{\sqrt{2}x - 1}}, \ \ 0 \le x \le \pi$$

The curve has a maximum turning point at ${\it P}\,$ and a minimum turning point at ${\it Q}\,$ as shown in Figure 5.

Show that the x coordinates of point P and point Q are solutions of the equation $\tan 2x = \sqrt{a}$, where a is a constant to be found.

Categorisation: As above.

[Edexcel C3 June 2013 Q4a]

$$f(x) = 25x^2e^{2x} - 16$$
, $x \in \mathbb{R}$

One of the turning points of the curve with equation y = f(x) is (0, -16). Using calculus, find the exact coordinates of the other turning point.

.....

Question 21

Categorisation: Determine the equation of a tangent to the curve.

[Edexcel C3 June 2009 Q4ii]

A curve C has the equation

$$y = \sqrt{4x + 1}$$
, $x > -\frac{1}{4}$, $y > 0$

The point P on the curve has x -coordinate 2. Find an equation of the tangent to C at P in the form ax + by + c = 0, where a, b and c are integers.

Categorisation: As above, but where x = f(y)

[Edexcel C3 June 2014 Q3b]

The curve C has equation $x = 8y \tan 2y$.

The point P has coordinates $\left(\pi,\frac{\pi}{8}\right)$. Find the equation of the tangent to C at P in the form ay=x+b, where the constants a and b are to be found in terms of π .

.....

Question 23

Categorisation: Determine the equation of a normal to the curve.

[Edexcel C3 June 2010 Q2]

A curve C has equation

$$y = \frac{3}{(5-3x)^2}$$
, $x \neq \frac{5}{3}$

The point P on C has x -coordinate 2.

Find an equation of the normal to C at P in the form ax+by+c=0 , where a , b and c are integers.

Categorisation: As above.

[Edexcel C3 June 2011 Q7b Edited]

$$f(x) = \frac{5}{(2x+1)(x+3)}$$

$$x \neq \pm 3, x \neq -\frac{1}{2}$$

The curve C has equation y = f(x) . The point $P\left(-1, -\frac{5}{2}\right)$ lies on C.

Find an equation of the normal to C at P.

Question 25

Categorisation: As above, but in the context of having done algebraic long division first.

[Edexcel C3 June 2016 Q6b Edited]

$$f(x) = \frac{x^4 + x^3 - 3x^2 + 7x - 6}{x^2 + x - 6}, x > 2, x \in \mathbb{R}$$

Given that

$$\frac{x^4 + x^3 - 3x^2 + 7x - 6}{x^2 + x - 6} \equiv x^2 + 3 + \frac{4}{x - 2}$$

Hence or otherwise, using calculus, find an equation of the normal to the curve with equation y = f(x) at the point where x = 3.

Categorisation: Determine the gradient of parametric equations.

[Edexcel C4 June 2017 Q1a]

The curve C has parametric equations

$$x = 3t - 4$$

$$x = 3t - 4$$
 $y = 5 - \frac{6}{t}$ $t > 0$

Find $\frac{dy}{dx}$ in terms of t.

$$\frac{dy}{dx} = \dots$$

Question 27

Categorisation: As above, but with trigonometric expressions.

[Edexcel A2 SAM P1 Q13a]

The curve ${\cal C}$ has parametric equations $x=2\cos t$, $y=\sqrt{3}\cos 2t$, $0\leq t\leq \pi$

Find an expression for $\frac{dy}{dx}$ in terms of t .

$$\frac{dy}{dx} = \dots$$

Categorisation: Determine a particular gradient at a point on a parametric curve.

[Edexcel C4 June 2013(R) Q7a]

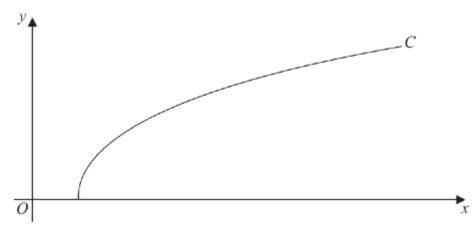


Figure 2

Figure 2 shows a sketch of the curve C with parametric equations

$$x = 27 \sec^3 t$$
, $y = 3 \tan t$, $0 \le t \le \frac{\pi}{3}$

Find the gradient of the curve C at the point where $t = \frac{\pi}{6}$.

.....

Question 29

Categorisation: Determine the equation of a normal to a parametric curve.

[Edexcel C4 Jan 2011 Q6a]

The curve C has parametric equations

$$x = \ln t$$
, $y = t^2 - 2$, $t > 0$.

Find an equation of the normal to C at the point where t=3.

Categorisation: As above, but involving exponential terms of the form a^t .

[Edexcel C4 Jan 2013 Q5c Edited]

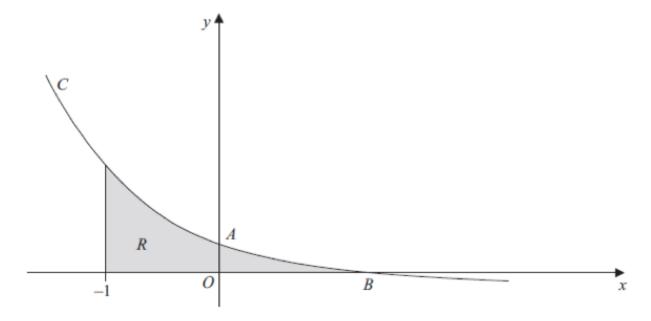


Figure 2

Figure 2 shows a sketch of part of the curve C with parametric equations

$$x = 1 - \frac{1}{2}t$$
, $y = 2^t - 1$.

The curve crosses the y -axis at the point A and crosses the x -axis at the point B .

The point A has coordinates (0,3).

Find an equation of the normal to C at the point A.

Categorisation: Use implicit differentiation.

[Edexcel C4 June 2016 Q3a] The curve C has equation

$$2x^2y + 2x + 4y - \cos(\pi y) = 17$$

Use implicit differentiation to find $\frac{dy}{dx}$ in terms of x and y .

$$\frac{dy}{dx} = \dots$$

Question 32

Categorisation: Use implicit differentiation to find the gradient at a specific point.

[Edexcel C4 June 2017 Q4a]

The curve C has equation

$$4x^2 - y^3 - 4xy + 2^y = 0$$

The point P with coordinates (-2, 4) lies on C.

Find the exact value of $\frac{dy}{dx}$ at the point P.

$$\frac{dy}{dx} = \dots$$

Categorisation: As above, but involving an exponential term.

[Edexcel C4 June 2013(R) Q2]

The curve C has equation

$$3^{x-1} + xy - y^2 + 5 = 0$$

Show that $\frac{dy}{dx}$ at the point (1,3) on the curve C can be written in the form $\frac{1}{\lambda} \ln (\mu e^3)$, where λ and μ are integers to be found.

$$\frac{dy}{dx} = \dots$$

Question 34

Categorisation: Determine a turning point on a parametric curve by solving simultaneously with the original equation.

[Edexcel C4 June 2015 Q2b Edited]

The curve C has equation $x^2 - 3xy - 4y^2 + 64 = 0$

The gradient function $\frac{dy}{dx}$ can be expressed as

$$\frac{dy}{dx} = \frac{2x - 3y}{3x + 8y}$$

Find the coordinates of the points on $\it C$ where ${dy\over dx}=0$.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

Categorisation: As above.

[Edexcel C4 June 2014(R) Q3b Edited]

$$x^2 + y^2 + 10x + 2y - 4xy = 10$$

An expression for $\frac{dy}{dx}$ can be expressed as

$$\frac{dy}{dx} = \frac{x+5-2y}{2x-y-1}$$

Find the values of y for which $\frac{dy}{dx} = 0$.

.....

Question 36

Categorisation: Connect different rates of change using the chain rule.

[Edexcel C4 June 2012 Q2b Edited]

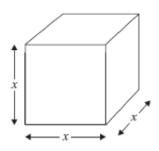


Figure 1

Figure 1 shows a metal cube which is expanding uniformly as it is heated. At time t seconds, the length of each edge of the cube is x cm, and the volume of the cube is V cm³.

Given that the volume, $V = \text{cm}^3$, increases at a constant rate of 0.048 cm³ s⁻¹, find $\frac{dx}{dt}$ when x = 8.

$$\frac{dx}{dt} = \dots$$

Categorisation: As above.

[Edexcel C4 June 2012 Q2c Edited]

(Continued from above) Given that the volume, $V \, \mathrm{cm}^3$, increases at a constant rate of 0.048 cm³ s⁻¹, find the rate of increase of the total surface area of the cube, in cm² s⁻¹, when x=8.

$$\frac{dS}{dt} = \dots$$

Question 38

Categorisation: As above.

[Edexcel C4 June 2014 Q4]

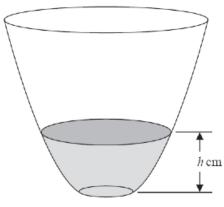


Figure 2

A vase with a circular cross-section is shown in Figure 2. Water is flowing into the vase. When the depth of the water is h cm, the volume of water V cm³ is given by

$$V = 4\pi h(h+4)$$
, $0 \le h \le 25$

Water flows into the vase at a constant rate of 80 π cm $^3s^{-1}$.

Find the rate of change of the depth of the water, in $cm\ s^{-1}$, when h=6.

$$\frac{dh}{dt} = \dots cms^{-1}$$

Answers

Question 1

(a)
$$\frac{1}{(x^2+3x+5)} \times \dots, = \frac{2x+3}{(x^2+3x+5)}$$
 M1,A1

Question 2

(a)
$$\frac{dy}{dx} = x^2 e^x + 2x e^x$$
 M1,A1,A1

Question 3

(i)(a)
$$y = x^2 \cos 3x$$

Apply product rule:
$$\begin{cases} u = x^2 & v = \cos 3x \\ \frac{du}{dx} = 2x & \frac{dv}{dx} = -3\sin 3x \end{cases}$$
Applies $vu' + uv'$ correctly for their u, u', v, v' AND gives an expression of the form $\alpha x \cos 3x \pm \beta x^2 \sin 3x$
Any one term correct Both terms correct and no further simplification to terms in $\cos \alpha x^2$ or $\sin \beta x^3$.

Question 4

$$2(a) \qquad y = \frac{4x}{\left(x^2 + 5\right)} \Rightarrow \left(\frac{dy}{dx}\right) = \frac{4\left(x^2 + 5\right) - 4x \times 2x}{\left(x^2 + 5\right)^2}$$

$$\Rightarrow \left(\frac{dy}{dx}\right) = \frac{20 - 4x^2}{\left(x^2 + 5\right)^2}$$
M1A1

5.(a)
$$\frac{d}{dx}(\cos 2x) = -2\sin 2x$$
Applies $\frac{vu'-uv'}{v^2}$ to $\frac{\cos 2x}{\sqrt{x}} = \frac{\sqrt{x} \times -2\sin 2x - \cos 2x \times \frac{1}{2}x^{\frac{1}{2}}}{(\sqrt{x})^2}$

$$= \frac{-2\sqrt{x}\sin 2x - \frac{1}{2}x^{\frac{1}{2}}\cos 2x}{x}$$

Attempts the product and chain rule on $y = x(2x+1)^4$	
$\frac{dy}{dx} = (2x+1)^4 + 8x(2x+1)^3$	A1
Takes out a common factor $\frac{dy}{dx} = (2x+1)^3 \{(2x+1)+8x\}$	M1
$\frac{dy}{dx} = (2x+1)^3 (10x+1) \Rightarrow n = 3, A = 10, B = 1$	A1

Question 7

(i)
$$6\sin x \cos x + 2\sec 2x \tan 2x$$

or $3\sin 2x + 2\sec 2x \tan 2x$ [M1 for $6\sin x$]

(3)

Question 8

(b)
$$\frac{d}{dx}(\sec^2 3x) = 2\sec 3x \times 3\sec 3x \tan 3x (= 6\sec^2 3x \tan 3x)$$
 M1
$$= 6(1 + \tan^2 3x) \tan 3x$$
 dM1
$$= 6(\tan 3x + \tan^3 3x)$$
 A1

Question 9

(a)(i)
$$\frac{d}{dx}(\ln(3x)) = \frac{3}{3x}$$

$$\frac{d}{dx}(x^{\frac{1}{2}}\ln(3x)) = \ln(3x) \times \frac{1}{2}x^{-\frac{1}{2}} + x^{\frac{1}{2}} \times \frac{3}{3x}$$
M1A1

Question 10

(c)
$$\frac{d^2 y}{dx^2} = \frac{0 - \left[6(x-1)^{\frac{1}{2}} + 3x(x-1)^{-\frac{1}{2}}\right]}{36x^2(x-1)}$$

$$\frac{d^2 y}{dx^2} = \frac{6 - 9x}{36x^2(x-1)^{\frac{1}{2}}} = \frac{2 - 3x}{12x^2(x-1)^{\frac{1}{2}}}$$
dM1A1

Question 11

(c)
$$\frac{dT}{dt} = -20 \text{ e}^{-0.05 \text{ f}}$$
 (M1 for $k \text{ e}^{-0.05 \text{ f}}$)

At $t = 50$, rate of decrease = (±) 1.64 °C/min

(b)
$$\frac{dP}{dt} = \frac{(1+3e^{-0.9t}) \times -10e^{-0.1t} -100e^{-0.1t} \times -2.7e^{-0.9t}}{(1+3e^{-0.9t})^2}$$
 M1 A1

(ii)
$$x = \ln(\sec 2y) \Rightarrow \frac{dx}{dy} = \frac{1}{\sec 2y} \times 2\sec 2y \tan 2y$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{2\tan 2y} = \frac{1}{2\sqrt{\sec^2 2y - 1}} = \frac{1}{2\sqrt{e^{2x} - 1}}$$
M1 M1 A1

Question 14

(c)
$$x = 2\sin\left(\frac{y}{3}\right) \Rightarrow \frac{dx}{dy} = \frac{2}{3}\cos\left(\frac{y}{3}\right)$$

$$\frac{dy}{dx} = \frac{1}{\frac{2}{3}\cos\left(\frac{y}{3}\right)} = \frac{1}{\frac{2}{3}\sqrt{1-\left(\frac{x}{2}\right)^2}} = \frac{1}{\frac{2}{3}\sqrt{1-\left(\frac{x}{2}\right)^2}}$$

$$\frac{dy}{dx} = \frac{3}{\sqrt{4-x^2}} \quad \text{cao} \quad \text{A1}$$

Question 15

(ii)
$$x = \sin^2 2y \Rightarrow \frac{dx}{dy} = 2\sin 2y \times 2\cos 2y$$
 M1A1
Uses $\sin 4y = 2\sin 2y \cos 2y$ in their expression M1

$$\frac{dx}{dy} = 2\sin 4y \Rightarrow \frac{dy}{dx} = \frac{1}{2\sin 4y} = \frac{1}{2}\operatorname{cosec}4y$$
 M1A1

Question 16

(b)
$$\frac{20-4x^2}{\left(x^2+5\right)^2} < 0 \Rightarrow x^2 > \frac{20}{4} \text{ Critical values of } \pm \sqrt{5}$$

$$x < -\sqrt{5}, x > \sqrt{5} \text{ or equivalent}$$

$$dM1A1$$

Question 17

5 (i)
$$y = e^{3x} \cos 4x \Rightarrow \left(\frac{dy}{dx}\right) = \cos 4x \times 3e^{3x} + e^{3x} \times -4\sin 4x$$
 M1A1
Sets $\cos 4x \times 3e^{3x} + e^{3x} \times -4\sin 4x = 0 \Rightarrow 3\cos 4x - 4\sin 4x = 0$ M1
$$\Rightarrow x = \frac{1}{4}\arctan\frac{3}{4}$$
 M1
$$\Rightarrow x = \text{awrt } 0.9463 \quad 4\text{dp}$$
 A1

Question 18

Complete strategy of setting $f'(x) = 0$ and rearranges to make $x =$		3.1a
$\begin{cases} u = (8 - x) & v = \ln x \\ \frac{du}{dx} = -1 & \frac{dv}{dx} = \frac{1}{x} \end{cases}$		
$f'(x) = -\ln x + \frac{8-x}{x}$	M1	1.1b
$f(x) = -\ln x + \frac{1}{x}$		1.1b
$-\ln x + \frac{8-x}{x} = 0 \Rightarrow -\ln x + \frac{8}{x} - 1 = 0$ $\Rightarrow \frac{8}{x} = 1 + \ln x \Rightarrow x = \frac{8}{1 + \ln x} *$	A1*	2.1

www.drfrostmaths.com

Attempts to differentiate using the quotient rule or otherwise	
$f'(x) = \frac{e^{\sqrt{2}x-1} \times 8\cos 2x - 4\sin 2x \times \sqrt{2}e^{\sqrt{2}x-1}}{\left(e^{\sqrt{2}x-1}\right)^2}$	A1
Sets $f'(x) = 0$ and divides/ factorises out the $e^{\sqrt{2}x-1}$ terms	M1
Proceeds via $\frac{\sin 2x}{\cos 2x} = \frac{8}{4\sqrt{2}}$ to $\Rightarrow \tan 2x = \sqrt{2}$ *	A1*

Question 20

4(a)
$$f'(x) = 50x^2e^{2x} + 50xe^{2x}$$
 oe.
Puts $f'(x) = 0$ to give $x = -1$ and $x = 0$ or one coordinate dM1A1
Obtains $(0,-16)$ and $(-1,25e^{-2}-16)$ CSO A1

(ii)
$$y = \sqrt{4x+1}, \ x > -\frac{1}{4}$$

At $P, \ y = \sqrt{4(2)+1} = \sqrt{9} = 3$ At $P, \ y = \sqrt{9}$ or $\frac{3}{2}$ B1
$$\frac{dy}{dx} = \frac{1}{2}(4x+1)^{\frac{1}{2}}(4)$$

$$\frac{dy}{dx} = \frac{2}{(4x+1)^{\frac{1}{2}}}$$
At $P, \ \frac{dy}{dx} = \frac{2}{(4(2)+1)^{\frac{1}{2}}}$
Substituting $x = 2$ into an equation involving $\frac{dy}{dx}$; A1
Hence $m(T) = \frac{2}{3}$
Either $T: \ y - 3 = \frac{2}{3}(x-2)$; or $y - y_1 = m(x-2)$ or $y - y_2 = m(x-1)$ or $y - y_3 = m(x-1)$ or $y - y_4 = m(x-1$

(b)
$$\frac{dx}{dy} = 8 \tan 2y + 16y \sec^2(2y)$$
 M1A1A1
$$At P \frac{dx}{dy} = 8 \tan 2\frac{\pi}{8} + 16\frac{\pi}{8} \sec^2\left(2 \times \frac{\pi}{8}\right) = \left\{8 + 4\pi\right\}$$
 M1
$$\frac{y - \frac{\pi}{8}}{x - \pi} = \frac{1}{8 + 4\pi}, \text{ accept } y - \frac{\pi}{8} = 0.049(x - \pi)$$
 M1A1
$$\Rightarrow (8 + 4\pi)y = x + \frac{\pi^2}{2}$$
 A1

Question 23

At
$$P$$
, $y = \underline{3}$

$$\frac{dy}{dx} = \underline{3(-2)(5-3x)^{-3}(-3)} \quad \left\{ \text{or } \frac{18}{(5-3x)^3} \right\}$$

$$\frac{dy}{dx} = \frac{18}{(5-3(2))^3} \left\{ = -18 \right\}$$

$$m(\mathbf{N}) = \frac{-1}{-18} \quad \text{or } \frac{1}{18}$$

$$\mathbf{N}: \quad y - 3 = \frac{1}{18}(x - 2)$$

$$\mathbf{N}: \quad \underline{x - 18y + 52 = 0}$$

$$\mathbf{B}$$

$$\mathbf{M}1$$

Question 24

(b)
$$f(x) = \frac{5}{2x^2 + 7x + 3}$$

$$f'(x) = \frac{-5(4x + 7)}{(2x^2 + 7x + 3)^2}$$
 M1M1A1
$$f'(-1) = -\frac{15}{4}$$
 Uses $m_1 m_2 = -1$ to give gradient of normal $= \frac{4}{15}$ M1
$$\frac{y - (-\frac{5}{2})}{(x - -1)} = their \frac{4}{15}$$
 M1
$$y + \frac{5}{2} = \frac{4}{15}(x + 1) \text{ or any equivalent form}$$
 A1

(b)
$$f'(x) = 2x - \frac{4}{(x-2)^2}$$
 M1A1ft Subs $x = 3$ into $f'(x = 3) = 2 \times 3 - \frac{4}{(3-2)^2} = (2)$ M1

Uses $m = -\frac{1}{f'(3)} = \left(-\frac{1}{2}\right)$ with $(3, f(3)) = (3, 16)$ to form eqn of normal $y - 16 = -\frac{1}{2}(x-3)$ or equivalent cso M1A1

(a)
$$\frac{dx}{dt} = 3, \quad \frac{dy}{dt} = 6t^{-2}$$

$$\frac{dy}{dx} = \frac{6t^{-2}}{3} \left\{ = \frac{6}{3t^2} = 2t^{-2} = \frac{2}{t^2} \right\}$$
their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ to give $\frac{dy}{dx}$ in terms of t
or their $\frac{dy}{dt}$ multiplied by their $\frac{dt}{dx}$ to give $\frac{dy}{dx}$ in terms of t

$$\frac{6t^{-2}}{3}$$
, simplified or un-simplified, in terms of t . See note. A1 isw

Question 27

Attempts
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$
 M1
$$\frac{dy}{dx} = \frac{\sqrt{3}\sin 2t}{\sin t} \quad (= 2\sqrt{3}\cos t)$$
 A1

Question 28

(a)
$$\frac{dx}{dt} = 81\sec^2 t \sec t \tan t, \quad \frac{dy}{dt} = 3\sec^2 t$$

$$\frac{dy}{dx} = \frac{3\sec^2 t}{81\sec^3 t \tan t} \left\{ = \frac{1}{27\sec t \tan t} = \frac{\cos t}{27\tan t} = \frac{\cos^2 t}{27\sin t} \right\}$$
At least one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct.

B1

$$\frac{dy}{dx} = \frac{3\sec^2 t}{81\sec^3 t \tan t} \left\{ = \frac{1}{27\sec t \tan t} = \frac{\cos t}{27\tan t} = \frac{\cos^2 t}{27\sin t} \right\}$$
Applies their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$

A1 cao cso

Question 29

(a)
$$\frac{dx}{dt} = \frac{1}{t}, \quad \frac{dy}{dt} = 2t$$

$$\frac{dy}{dx} = 2t^2$$

$$W1 \text{ A1}$$

$$Using $mm' = -1, \text{ at } t = 3$

$$m' = -\frac{1}{18}$$

$$y - 7 = -\frac{1}{18}(x - \ln 3)$$

$$M1 \text{ A1}$$$$

(c)
$$\frac{dx}{dt} = -\frac{1}{2} \text{ and either } \frac{dy}{dt} = 2^t \ln 2 \text{ or } \frac{dy}{dt} = e^{t \ln 2} \ln 2$$
 Attempts their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$. M1
$$At A, t = "2", \text{ so } m(\mathbf{T}) = -8 \ln 2 \Rightarrow m(\mathbf{N}) = \frac{1}{8 \ln 2}$$
 Applies $t = "2"$ and $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$ M1
$$y - 3 = \frac{1}{8 \ln 2} (x - 0) \text{ or } y = 3 + \frac{1}{8 \ln 2} x \text{ or equivalent.}$$
 See notes. $\frac{M1}{8} \text{ Al oe eso}$

(a) Way 1	$\left\{\frac{\cancel{x}\cancel{x}}{\cancel{x}} \times \right\} \left(\underbrace{\frac{4xy + 2x^2 \frac{dy}{dx}}{dx}} \right) + 2 + 4\frac{dy}{dx} + \pi \sin(\pi y) \frac{dy}{dx} = 0$		М1 <u>А1</u> <u>В</u> 1
	$\frac{\mathrm{d}y}{\mathrm{d}x}(2x^2+4+\pi\sin(\pi y))+4xy+2=0$		dM1
	$\left\{ \frac{dy}{dx} = \right\} \frac{-4xy - 2}{2x^2 + 4 + \pi \sin(\pi y)} \text{ or } \frac{4xy + 2}{-2x^2 - 4 - \pi \sin(\pi y)}$	Correct answer or equivalent	A1 cso

Question 32

(a) Way 1	$\left\{\frac{\cancel{b}\cancel{b}\cancel{c}}{\cancel{b}\cancel{c}\cancel{c}} \times \right\} \underbrace{8x - 3y^2 \frac{dy}{dx}}_{} \underbrace{-4y - 4x \frac{dy}{dx}}_{} + \underbrace{2^y \ln 2 \frac{dy}{dx}}_{} = 0$		M1 <u>A1 <u>M1</u> B1</u>
	$8(-2) - 3(4)^{2} \frac{dy}{dx} - 4(4) - 4(-2) \frac{dy}{dx} + 2^{4} \ln 2 \frac{dy}{dx} = 0$	dependent on the first M mark	dM1
	$-16 - 48\frac{dy}{dx} - 16 + 8\frac{dy}{dx} + 16\ln 2\frac{dy}{dx} = 0$		
	$\frac{dy}{dx} = \frac{32}{-40 + 16 \ln 2}$ or $\frac{-32}{40 - 16 \ln 2}$ or $\frac{4}{-5 + 2 \ln 2}$	or $\frac{4}{-5+\ln 4}$ or exact equivalent	A1 cso

Question 33

$3^{x-1} + xy - y^2 + 5 = 0$		
	$3^{x-1} \rightarrow 3^{x-1} \ln 3$	B1 oe
	Differentiates implicitly to include either	
$\left\{\frac{2\sqrt{y}}{\sqrt{y}}\right\}$ $3^{x-1}\ln 3 + \left(y + x\frac{dy}{dx}\right) - 2y\frac{dy}{dx} = 0$	$\pm \lambda x \frac{\mathrm{d}y}{\mathrm{d}x} \text{ or } \pm ky \frac{\mathrm{d}y}{\mathrm{d}x}.$	M1*
(ignore)	$xy \to +y + x \frac{\mathrm{d}y}{\mathrm{d}x}$	I
	$\dots + y + x \frac{\mathrm{d}y}{\mathrm{d}x} - 2y \frac{\mathrm{d}y}{\mathrm{d}x} = 0$	A1
$\{(1,3) \Rightarrow\} 3^{(1-1)} \ln 3 + 3 + (1) \frac{dy}{dx} - 2(3) \frac{dy}{dx} = 0$	Substitutes $x = 1$, $y = 3$ into their	dM1*
$\{(1,3) \Rightarrow \}$ 3 $113 + 3 + (1)\frac{1}{dx} - 2(3)\frac{1}{dx} = 0$	differentiated equation or expression.	divi
$\ln 3 + 3 + \frac{dy}{dx} - 6\frac{dy}{dx} = 0 \implies 3 + \ln 3 = 5\frac{dy}{dx}$		
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3 + \ln 3}{5}$		dM1*
$\frac{dy}{dx} = \frac{1}{5} (\ln e^3 + \ln 3) = \frac{1}{5} \ln (3e^3)$	Uses $3 = \ln e^3$ to achieve $\frac{dy}{dx} = \frac{1}{5} \ln (3e^3)$	Al cso

	······		············
(b)	$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = 0 = 0 \end{cases}$	$\Rightarrow \begin{cases} 2x - 3y = 0 \end{cases}$	М1
	$y = \frac{2}{3}x$	$x = \frac{3}{2}y$	A1ft
	$x^{2} - 3x\left(\frac{2}{3}x\right) - 4\left(\frac{2}{3}x\right)^{2} + 64 = 0$	$\left(\frac{3}{2}y\right)^2 - 3\left(\frac{3}{2}y\right)y - 4y^2 + 64 = 0$	dM1
	$x^{2} - 2x^{2} - \frac{16}{9}x^{2} + 64 = 0 \Rightarrow -\frac{25}{9}x^{2} + 64 = 0$	$\frac{9}{4}y^2 - \frac{9}{2}y^2 - 4y^2 + 64 = 0 \Rightarrow -\frac{25}{4}y^2 + 64 = 0$	
	$\left\{ \Rightarrow x^2 = \frac{576}{25} \Rightarrow \right\} x = \frac{24}{5} \text{or } -\frac{24}{5}$	$\left\{ \Rightarrow y^2 = \frac{256}{25} \Rightarrow \right\} y = \frac{16}{5} \text{or } -\frac{16}{5}$	A1 cso
	When $x = \pm \frac{24}{5}$, $y = \frac{2}{3} \left(\frac{24}{5} \right)$ and $-\frac{2}{3} \left(\frac{24}{5} \right)$	When $y = \pm \frac{16}{5}$, $x = \frac{3}{2} \left(\frac{16}{5} \right)$ and $-\frac{3}{2} \left(\frac{16}{5} \right)$	
	$\left(\frac{24}{5}, \frac{16}{5}\right)$ and $\left(-\frac{24}{5}, -\frac{16}{5}\right)$ or $x = \frac{24}{5}$	$v = \frac{16}{2}$ and $x = -\frac{24}{2}$, $v = -\frac{16}{2}$	ddM1
	(5,5)	5 5 cso	A1

(b)
$$\begin{cases} \frac{dy}{dx} = 0 \Rightarrow \} & x + 5 - 2y = 0 \\ \text{So } x = 2y - 5, \\ (2y - 5)^2 + y^2 + 10(2y - 5) + 2y - 4(2y - 5)y = 10 \\ 4y^2 - 20y + 25 + y^2 + 20y - 50 + 2y - 8y^2 + 20y = 10 \end{cases}$$

$$\text{gives } -3y^2 + 22y - 35 = 0 \text{ or } 3y^2 - 22y + 35 = 0$$

$$(3y - 7)(y - 5) = 0 \text{ and } y = \dots$$

$$y = \frac{7}{3}, 5$$

$$\text{Method mark for solving a quadratic equation.}$$

$$\{y = \} \frac{7}{3}, 5$$

$$\text{A1 case}$$

Question 36

(b)
$$\frac{dx}{dt} = \frac{dx}{dV} \times \frac{dV}{dt} = \frac{0.048}{3x^2}$$
At $x = 8$

$$\frac{dx}{dt} = \frac{0.048}{3(8^2)} = 0.00025 \quad (\text{cm s}^{-1})$$
2.5×10⁻⁴
A1

Question 37

(c)
$$S = 6x^2 \Rightarrow \frac{dS}{dx} = 12x$$

$$\frac{dS}{dt} = \frac{dS}{dx} \times \frac{dx}{dt} = 12x \left(\frac{0.048}{3x^2} \right)$$
At $x = 8$

$$\frac{dS}{dt} = 0.024 \quad (\text{cm}^2 \text{s}^{-1})$$
A1

$$\frac{\mathrm{d}V}{\mathrm{d}t} = 80\pi, \quad V = 4\pi h(h+4) = 4\pi h^2 + 16\pi h,$$

$$\frac{\mathrm{d}V}{\mathrm{d}h} = 8\pi h + 16\pi$$

$$\frac{\mathrm{d}V}{\mathrm{d}h} = 8\pi h + 16\pi$$

$$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{\mathrm{d}V}{\mathrm{d}t} \Rightarrow \begin{cases} (8\pi h + 16\pi) \frac{\mathrm{d}h}{\mathrm{d}t} = 80\pi \end{cases}$$

$$\left\{\frac{\mathrm{d}V}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \Rightarrow \right\} \quad (8\pi h + 16\pi) \frac{\mathrm{d}h}{\mathrm{d}t} = 80\pi$$

$$\left\{\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \div \frac{\mathrm{d}V}{\mathrm{d}h} \Rightarrow \right\} \quad \frac{\mathrm{d}h}{\mathrm{d}t} = 80\pi \times \frac{1}{8\pi h + 16\pi}$$
or $80\pi \div \text{Candidate's } \frac{\mathrm{d}V}{\mathrm{d}h}$

$$\text{When } h = 6, \\ \left\{\frac{\mathrm{d}h}{\mathrm{d}t} = \right\} \frac{1}{8\pi (6) + 16\pi} \times 80\pi \\ \left\{ = \frac{80\pi}{64\pi} \right\}$$

$$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{1.25}{8\pi (6)} \text{ (cms}^{-1})$$

$$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{1.25}{8\pi (6)} \text{ (cms}^{-1})$$