S1 Discrete Random Variables Questions ANSWERS (88 marks)

3.	(a)	$a = \underline{0.1}$ [F(3) = F(2) + P(Y=3) = (0.5 + 0.3)]	В1						
			В1						
		$b = 0.4 \mid A$	M1 A1						
		$c = 1 - F(3)$ or $1 - (a + b + 0.3)$ or $a + b + c = 0.7$ $c = \frac{0.2}{4}$	A1 (5)						
	(b)		M1 A1ft (2)						
		Notes	7						
		Correct answers with no (or irrelevant) working score full ma	arks						
	(a)	$1^{\text{st}} \text{B1} \qquad \text{for } a = 0.1$ $2^{\text{nd}} \text{B1} \qquad \text{for } F(3) = 0.8 \text{ or } d = 0.8$ $M1 \qquad \text{for a method for } b \text{ or } c. \text{ E.g. sight of } a + b = 0.5 \text{ or } a + b + c = 0.7$ $\text{If their values satisfy one of these equations then score M1 provided their values}$ $\text{are genuine probabilities (i.e. } 0 \text{This M1 may be implied by a correct answer for } b \text{ or } c 1^{\text{st}} \text{A1} \qquad \text{for } b \text{ or } P(2) = 0.4 2^{\text{nd}} \text{A1} \qquad \text{for } c \text{ or } P(3) = 0.2$							
	(b)	M1 for rearranging to $P(Y \ge 2)$ or 1 - $P(Y \le 1)$ or selecting cases $Y = 2$, 3 and 4 for 0.3 + their b + their c or 1 - their a , provided final answer < 1 and their values are probabilities.							

Jan 2011

6. (a)	k+2k+3k+4k=1 or $10k=1k=0.1$ (*) [allow verification with a comment e.g. "so $k=0.1$ "]								B1cso	(1)
(b)	$E(X) = 1 \times 0.1 + 2 \times 0.2 + 3 \times 0.3 + 4 \times 0.4 = 3$									(2)
(c)	$E(X^2) = 1 \times 0.1 + 4 \times 0.2 + 9 \times 0.3 + 16 \times 0.4 = 10$								M1 A1	(2)
(d)	Var(X) = 10 - 9(=1)								M1	
	$Var(2-5X) = 5^2 Var(X) = 25$								M1 A1	(3)
(e)	$P(1,3)+P(2,2)=2\times0.1\times0.3+0.2\times0.2=0.1$ (*)							M1 A1cs		
(f)	$X_1 + X_2$ 2	3	4	5	6	7	8		B1 B1	(-)
	p 0.01	0.04	0.1	0.2	0.25	0.24	0.16			(2)
(g)	P(2)+P(3)=0.05								M1A1	
	• • • •									(2) [14]

Jun	2 2010						
Q3 (a)	$2a + \frac{2}{5} + \frac{1}{10} = 1$ (or equivalent)	M1					
	$\underline{a = \frac{1}{4} \text{ or } 0.25}$	A1	(2)				
(b	$E(X) = \underline{1}$	B1	(1)				
(c	$E(X^{2}) = 1 \times \frac{1}{5} + 1 \times \frac{1}{10} + 4 \times \frac{1}{4} + 9 \times \frac{1}{5} $ (= 3.1)	M1					
	$Var(X) = 3.1 - 1^2$, $= 2.1 \text{ or } \frac{21}{10} \text{ oe}$	M1 A1	(3)				
(d	$Var(Y) = (-2)^{2} Var(X), \qquad = 8.4 \text{ or } \frac{42}{5} \underline{\text{oe}}$	M1 A1	(2)				
(e	$X \ge Y$ when $X = 3$ or 2, so probability = " $\frac{1}{4}$ " + $\frac{1}{5}$	M1 A1ft					
	$=\frac{9}{20}\underline{\mathbf{oe}}$	A1	(3)				
		Tota	d 11				
(a	M1 for a clear attempt to use $\sum P(X = x) = 1$	l					
	Correct answer only 2/2. NB Division by 5 in parts (b), (c) and (d) seen scores 0. Do not apply ISW.						
(b	B1 for 1						
(c	1 st M1 for attempting $\sum x^2 P(X = x)$ at least two terms correct. Can follow through.						
	2^{nd} M1 for attempting $E(X^2) - [E(X)]^2$ or allow subtracting 1 from their attempt at $E(X^2)$ provided no incorrect formula seen. Correct answer only 3/3.						
(d	M1 for $(-2)^2 \operatorname{Var}(X)$ or $4\operatorname{Var}(X)$ Condone missing brackets provided final answer correct for their $\operatorname{Var}(X)$. Correct answer only 2/2.						
(e	Allow M1 for distribution of $Y = 6 - 2X$ and correct attempt at $E(Y^2) - [E(Y)]^2$ M1 for identifying $X = 2$, 3 1 st A1ft for attempting to find their $P(X=2) + P(X=3)$ 2 nd A1 for $\frac{9}{20}$ or 0.45						

(a)	0 1 2 3 3a 2a a b	B1	(1)						
(b)	3a + 2a + a + b = 1 or equivalent, using Sum of probabilities =1 $2a + 2a + 3b = 1.6$ or equivalent, using E(X)=1.6	M1 M1							
	14a = 1.4 Attempt to solve	M1dep							
	a = 0.1 cao	B1							
	b = 0.4 cao	B1							
(c)	P(0.5 < x < 3) = P(1) + P(2) 3a or their $2a$ +their a	M1	(5)						
	= 0.2 + 0.1								
	= 0.3 Require $0 < 3a < 1$ to award follow through	A1 ft							
			(2)						
(d)	E(3X-2) = 3E(X) - 2	M1	` '						
	$= 3 \times 1.6 - 2$								
	= 2.8 cao	A1	4=-						
(-)		***	(2)						
(e)									
	= 1.64 **given answer** cso	AT	(3)						
(f)	Var(3Y-2) = 9 Var(Y)	M1	(3)						
(.)									
	- 14.70 awit 14.8	AI	(2) [1 5]						
5									
	6(a) Condone <i>a</i> clearly stated in text but not put in table. 6(b) Must be attempting to solve 2 different equations so third M dependent upon first								
	Correct answers seen with no working B1B1 only, 2/5								
	6(e) Award first M for at least two non-zero terms correct. Allow first M for correct								
	expression with a and b e.g. $E(X^2) = 6a + 9b$								
	Given answer so award final A1 for correct solution.								
	6(t) 14.76 only award M1A1								
	(b) (c) (d) (e)	(b) $3a + 2a + a + b = 1$ or equivalent, using Sum of probabilities = 1 $2a + 2a + 3b = 1.6$ or equivalent, using E(X)=1.6 $14a = 1.4$ Attempt to solve $a = 0.1$ $a = 0.4$ Cao $a = 0.1$ Attempt to solve $a = 0.1$ Attempt to solve $a = 0.2 + 0.1$ $a = 0.3$ Require $0 < 3a < 1$ to award follow through (d) $E(3X - 2) = 3E(X) - 2$ $a = 3 \times 1.6 - 2$ $a = 2.8$ Cao (e) $E(X^2) = 1 \times 0.2 + 4 \times 0.1 + 9 \times 0.4 (= 4.2)$ Var $(X) = 4.2$ **given answer** (f) $Var(3X - 2) = 9 Var(X)$ awart 14.8 6(a) Condone a clearly stated in text but not put in table. 6(b) Must be attempting to solve 2 different equations so third M dependent upon first two Ms being awarded. Correct answers seen with no working B1B1 only, 2/5 Correctly verified values can be awarded M1 for correctly verifying sum of probabilities = 1, M1 for using $E(X) = 1.6 \text{ M0}$ as no attempt to solve and B1B1 if answers correct. 6(d) 2.8 only award M1A1 6(e) Award first M for at least two non-zero terms correct. Allow first M for correct expression with a and b e.g. $E(X^2) = 6a + 9b$	(b) $3a + 2a + a + b = 1$ or equivalent, using Sum of probabilities = 1 $2a + 2a + 3b = 1.6$ or equivalent, using E(X)=1.6 M1 $2a + 2a + 3b = 1.6$ Attempt to solve $2a + 2a + 3b = 1.6$ Attempt to solve $2a + 2a + 3b = 1.6$ Attempt to solve $2a + 2a + 3b = 1.6$ Attempt to solve $2a + 2a + 3b = 1.6$ Attempt to solve $2a + 2a + 3b = 1.6$ Attempt to solve $2a + 2a $						

Jan 2012

Juni	2012	_				
3 (a)	5 2k 7 k 1	M1				
	$\frac{5}{21} + \frac{2k}{21} + \frac{7}{21} + \frac{k}{21} = 1$					
	$\frac{12+3k}{21}=1$					
	21	Α1				
	k = 3 * AG required for both methods	A1				
			(2)			
(b)	11					
	$\frac{11}{21}$	B1				
			(1)			
(c)	T/T 0.5 0.67 c.1		` '			
	$E(X) = 2 \times \frac{5}{21} + 3 \times \frac{6}{21} + 4 \times \frac{7}{21} + 6 \times \frac{1}{7}$	M1				
	21 21 7					
	11 74					
	$=3\frac{11}{21}$ or $\frac{74}{21}$ or awrt 3.52	A1				
	21 21	A	(0)			
			(2)			
(d)	T(T2) 22 5 22 6 42 7 62 1					
	$E(X^2) = 2^2 \times \frac{5}{21} + 3^2 \times \frac{6}{21} + 4^2 \times \frac{7}{21} + 6^2 \times \frac{1}{7}$	M1				
	= 14	A1				
			(2)			
			(2)			
(e)	$\frac{1}{1}$					
	$Var(X) = 14 - \left(3\frac{11}{21}\right)^2$	M1				
	()					
	$=1\frac{257}{441}$ or $\frac{698}{441}$ or awrt 1.6	A1				
	711 711					
	$Var (7X - 5) = 7^2 Var (X)$	M1				
	$= 77\frac{5}{9}$ or $\frac{698}{9}$ or awrt 77.6					
	9 9 9	A1				
			(4)			
		Tota	111			
NOTES						
(a)	M1 Award for verification. Sub in k=3 and show $\sum x P(X = x) = 1$. Require at least					
	three correct terms seen or line 2 of scheme.					
	A1 Correct solution only including verification.					
(b)	B1 Award for exact equivalent.					
(c)	M1 At least two correct terms required for method, follow through 'their k' for					
	method. Correct answer only, award M1 A1.					
(d)	M1 At least two correct terms required for method. M0 if probability is squared.					
	Correct answer only, award M1 A1. Accept exact equivalent of 14 for A1.					
(e)	M1 for use of correct formula in both. 1.6 can be implied by correct final answer.					
	Working needs to be clearly labelled to award first method mark without second					
	stage of calculation.					
	If a new table for values of $7X - 5$ is used, so $Y = 7X - 5$					
	$E(Y^2) = \frac{9751}{21}$; $Var(Y) = 77\frac{5}{9}$ or $\frac{698}{9}$ or awrt 77.6 Award M1A1; M1A1					
	$\frac{1}{21}$, $\frac{1}{21}$, $\frac{1}{9}$ of awit 77.0 Award WIAI, WIAI					
	If any attempt to divide by 4 seen as part of working award M0 for that part.					

3. (a)	N.B. Part	B1, B1, B	1					
	X	1 2	3 4	5	6			
	P(X=x)	$\frac{1}{36}$ $\frac{3}{36}$	$\frac{5}{36}$ $\frac{7}{36}$	9 36	11 36			
	0		(3)					
(b)	P(3) + P(4) + P(5)	M1, A1	(2)					
(c)	$E(X) = \frac{1}{36} + 2 \times \frac{3}{3}$	$\frac{3}{6} + \dots, = \frac{161}{36}$	or 4.472	or $4\frac{17}{36}$			M1, A1	(2)
(d)	$E(X^2) = \frac{1}{36} + 2^2 >$	M1, A1						
	$Var(X) = \frac{791}{36} - \left($	M1, A1c.s.o. (4)						
(e)	Var(2-3X) = 9	(1.97 or (-3)	$^{2} \times 1.97, = $	17.73		awrt <u>17.7</u> or $\frac{2555}{144}$	M1, A1	(2)
							13 1	narks
(a)	$1^{st} B1 \text{ for } x = 1,$	-						
	2 nd B1 for at leas							
	3 rd B1 for a fully							
(b)	M1 for attemp	pt to add the co	orrect three p	robabili	ties, f	their probability distrib	ution	
(c)	M1 for a correct attempt at E(X). Minimum is as printed. Exact answer only scores M1A1.							
	[Division by 6 at	any point scor	res M0, no IS	SW. No	n-exa	ct answers with no worki	ng score M	0.]
(d)	1 st M1 for a correct attempt at $E(X^2)$. Minimum as printed. $\frac{791}{36}$ or awrt 21.97 scores M1							
	2 nd M1 for their l							
	2 nd A1 cso needs	ssion seen.						
	Can accept <u>at least 4 sf</u> for both. i.e. 21.97 for $\frac{791}{36}$, 4.472 for $\frac{161}{36}$, 20.00 for $\left(\frac{161}{36}\right)^2$.							
(e)	M1 for correct use of $Var(aX + b)$ formula or a <u>full</u> method.							
	NB $-3^2 \times 1.97$ followed by awrt 17.7 scores M1A1 <u>BUT</u> $-3^2 \times 1.97$ alone, or fo							
	– 17.7, sc	ores M0A0.						