AS-Level Mathematics - Pure Maths Test - 'INTERMEDIATE' | 1. | | Factorise $9x^2 - 4y^2$ | |----|-----|--| | | (b) | Simplify $(4x^2)^{\frac{-3}{2}}$ | | | (c) | Rationalise the denominator of $\frac{\sqrt{5}-2}{\sqrt{5}+3}$ | | 2. | (a) | Show that $x - 2$ is a factor of $f(x) = 2x^3 - 3x^2 - 5x + 6$ | | | (b) | Factorise $f(x)$ completely | | | (c) | Sketch $f(x)$. | | | | | | | | | | 3. | (a) | Determine the set of values of k for which the equation $x^2 + 2x - k = 0$ has 2 real solutions. | | | (b) | | | | | | | | | | 4. Solve the following simultaneous equations: $$2y + x - 3 = 0$$ $$x^2 + 3xy - 10 = 0$$ | 5. | Find the values of x for which $x^2 < 2x + 3$ | |----|---| | | | | 6. | Sketch the graph of $f(x) = 4x^2 - 4x - x^3$. | | | | | 7. | The line l_1 passes through the points $A(2,6)$ and $B(0,-1)$. The line l_2 is perpendicular to l_1 and intersects l_1 at the point B . | | | (a) Find the equation of the line l_1 in the form $ax + by + c = 0$ where a, b and c are integers | | | (b) Find the coordinates of the point where l_2 intersects the x -axis | | 8. | The lines $x = 2$ and $x = 7$ are tangent to a circle and $y = 4$ touches the top of the circle. Find the equation of the circle in the form $(ax + b)^2 + (ay + c)^2 = d$, where a , b , c and d are integers | | | | | 9. | If x is so small that x to the power of 3 or higher can be ignored, show that | | | $(3-x)(1+2x)^4 \approx 3 + 23x + 64x^2$ | | | | | | | 10. Calculate the area of this quadrilateral: | 11. | Triangle PQR is such that $PQ=3$ cm, $PR=4$ cm and angle $QPR=\frac{2}{5}\pi$. An arc of a circle, centre at P and radius 3cm starts at Q and cuts PR at S . Find the perimeter and area of the region enclosed by the arc QS and the sides SR and QR | |-----|--| | | | | | | | | | | | | | 12. | Without the use of a calculator, evaluate the following: | | | (a) $\cos(270)$ | | | (b) $\sin\left(\frac{-\pi}{2}\right)$ | | | (c) $\tan (180)$ | | 13. | Solve $\cos(4t) = \frac{2}{3}$ on the interval $0 \le t \le 360$ | | | | | 15. | Find y given that $\frac{dy}{dx} = \frac{1}{\sqrt{x}}$ and y passes through the point $(9,9)$ | |-----|---| | | | | | | | 16. | Find and classify the stationary points of $y = 2x^3 - 3x^2 - 36x + 14$ | | | | | 17. | Find the equation of the tangent to the curve of $y = x^2(1-x)$ at the point where $x = 1$ | | | | | | | | 18. | (a) Find the x-coordinates of where the graphs of $y = 3x - x^2$ and $y = 2x$ intersect. | | | | | | (b) Hence, find the area of the region enclosed by the two graphs | | | | | | |